03.11.2022

Efficient deburring with robots

KADIA system processes battery trays

If a milling cutter is guided by a robot, the machining is fundamentally more unstable than on a machining centre. To reliably ensure the shortest cycle times in industrial production in this instance, KADIA is using MAPAL’s FlyCutter with three cutting edges in a newly developed system with three robots for deburring battery trays for electric vehicles.

The PCD milling cutter FlyCutter from MAPAL clamped in the robot from KADIA in front of the battery tray.
  • The PCD milling cutter FlyCutter from MAPAL clamped in the robot from KADIA in front of the battery tray.
  • Jannik Weiss from KADIA and Norbert Meier from MAPAL in discussion.
  • A battery tray made of aluminium profiles.
  • The KADIA special machine for deburring in layout with three robots.
  • The PCD-tipped FlyCutter with three cutting edges from MAPAL.
  • The component shows chatter marks.

The story of Nürtingen-based KADIA Produktion GmbH + Co began back in 1959 with the production of honing tools. The first honing machines were developed ten years later. The company tapped into another branch of business in 1981 with the manufacture of deburring machines. Today, KADIA is a leading specialist in honing and deburring technology and currently employs 200 people.

Its main customers are car manufacturers and suppliers, construction and agricultural machinery manufacturers, wind power plant producers and the aerospace industry. While the manufacturer offers standard machinery in different sizes for honing, in principle, custom machines are built for deburring. Customers include major machine manufacturers that bring KADIA on board as a deburring expert.

Jannik Weiss from KADIA and Norbert Meier from MAPAL in discussion.
Jannik Weiss, Sales Specialist Deburring & Robotics at KADIA (left), and Norbert Meier, Technical Consultant at MAPAL, are very happy with the results of this joint project.  ©MAPAL

Pencil test for burrs

In mechanical machining, a distinction is made between loose and fixed burrs. After deburring, depending on what’s required, the part should have sharp edges, edge rounding or a chamfer, which is why this is also known as edge design. To assess a burr, KADIA uses a simple but meaningful test using the lead of a mechanical pencil extended by five millimetres. If it can be used to remove the burr, then the burr is loose. If the lead breaks, it’s a fixed burr, which needs to either be milled off or can be left in place, as it won’t come off later.

The size of the workpiece is also crucial to machining processes that make use of robots. Guiding the workpiece is favoured for smaller parts. The robot guides the workpiece along fixed processing units. In a tool-guided strategy, the robot arm processes a workpiece firmly clamped in place. “For bigger workpieces, I’m much more skilful with the milling cutter in hand than if I have to move the bulky part,” explains Jannik Weiss, Sales Specialist Deburring & Robotics at KADIA.

A battery tray made of aluminium profiles.
The aluminium profile tray design is roughly the same size as a double bed frame and is used to hold batteries in an electric vehicle. Deburring ensures the lid fits cleanly and remains tightly sealed after “closing”.  ©KADIA Produktion GmbH + Co.

Machining in the test cell

The centrepiece of development at KADIA is a five-by-six-metre test cell with a six-axle industrial robot and a quick-release unit. This enables testing of what is set to go on to become the system. Preliminary tests determine the optimum cutting data and assess stability. The cell is home to 15 changeable units. The robot has automated access with an action radius of 2.70 m to nine of these. Each unit represents a specific function that is used for machining a part. Typically, it consists of a motor spindle with a connection and a cutting tool.

A rotary table as the seventh axle is also part of the equipment of the test cell, which also has enough space to accommodate other systems, such as coolant supply or additional process units. At KADIA, several parts are equipped for various tests in the cell at the same time.

The KADIA special machine for deburring in layout with three robots.
The custom machine layout requires the use of three robots. Two deburr the front, while the third machines the back. This achieves the optimum cycle rate in industrial production.  ©KADIA Produktion GmbH + Co.

For initial preliminary tests on a dummy part for the battery tray, KADIA used a round-insert milling cutter already in stock in. The tool proved wholly unsuitable for the task. The vibrations that occurred were so severe that even the processing spindle was damaged. Even with low cutting values, the background noise during milling was still noticeable in the adjacent building.

With the task to deliver a suitable milling cutter for the aluminium housing, MAPAL was chosen as the partner of choice. “We evaluate in advance in which tool manufacturer we see the potential for cooperation,” says Jannik Weiss. Although KADIA initially focuses on standard tools, it was a major plus for MAPAL that the tool manufacturer produces custom tools where necessary.

Two milling cutters to choose from

KADIA already used this service in a previous project for which MAPAL developed a special hydraulic chuck. The services of the Aalen-based manufacturer came to be appreciated here. When Norbert Meier, Technical Consultant at MAPAL, was on site to deal with this chuck, the battery tray project was explained to him. Meier had solutions ready right away and brought two milling cutters from MAPAL’s standard range with him on his next visit: the seven-blade face milling cutter IFM751 and the FlyCutter D63 with three cutting edges. Both milling cutters demonstrated they were up to the task in the tests, but to Jannik Weiss’s amazement, the little three-blade milling cutter gave much better results: “What the FlyCutter did there was really great.”
The PCD-tipped FlyCutter with three cutting edges from MAPAL.
The FlyCutter with PCD-tipped milling inserts was developed specifically for unstable machining processes and small connections.  ©KADIA Produktion GmbH + Co.

But Norbert Meier, who wanted to show the customer an alternative with the second milling cutter, had reckoned with this outcome. “We specially developed our FlyCutter for requirements like these,” he explains. MAPAL developed the lightweight tool specifically for unstable machining requirements that occur in robot applications. It is optimised for small connections such as BT30. The innovative design and use of aluminium ensure the milling head is particularly lightweight. With the diameter of 63 millimetres used at KADIA, the PCD milling head, including milling inserts, weighs just 220 grams.

The sensitive wedge adjustment make µ-precise adjustment of the milling inserts possible. The dovetail guide and an additional worm screw ensure perfect seating and high accuracy of repetition for the assembly of the milling inserts. The special, ultra-positive cutting edge geometry means only weak forces are applied to the part and the tool spindle guided by the robot.

When machining the battery tray, accuracy down to the µm is not required. In fact, to ensure the sealant applied by the automotive manufacturer holds better, a certain rawness of the surface is needed. Only the waviness must not be too high. In the tests, the milling cutter was moved beyond the limit to determine up to which point chatter marks on the relatively thin part still lay within the required tolerance.

Das Bauteil weist Rattermarken auf.
Je weiter der Roboterarm ausfährt, desto größer wird die Gefahr von Schwingungen und Rattermarken. Testreihen geben Aufschluss zu Schnittgeschwindigkeit, Vorschub und Schnitttiefe, für die der Fräser von MAPAL prozesssicher eine gute Oberfläche erzeugt.  ©KADIA Produktion GmbH + Co.

Schnittwerte und Positionierung sind wichtig

„Die Krux bei einer Roboterbearbeitung ist das Zusammenspiel zwischen Werkzeug, Vorrichtung und Roboter“, erläutert Norbert Meier. Die Steifigkeit ist ein grundsätzliches Problem bei der Bearbeitung. Je weiter der Roboterarm ausfährt, desto labiler wird die Zerspanung. In den Versuchen testet KADIA daher nicht nur unterschiedliche Schnittwerte, sondern auch verschiedene Positionierungen des Roboters vor oder neben dem Werkstück.

Für den vorliegenden Fall ermittelten die Partner als optimale Schnittdaten bei einer Spindeldrehzahl von 11.000 min-1 einen Vorschub von 0,16 m/s und eine Zustellung von 0,5 mm. Prozesssicher lieferte der FlyCutter eine sehr gute Oberflächenqualität. Diese Daten aus dem Versuchsstand hat KADIA in das Konzept für die Sondermaschine übernommen. Als wirtschaftlichste Lösung für die Serienfertigung hat der Hersteller dafür den Einsatz von drei Robotern in einer Zelle ermittelt. Während zwei sich die Bearbeitung der Vorderseite teilen, arbeitet der dritte an der Rückseite. Dem Kunden gibt KADIA nicht nur die Schnittdaten an die Hand, sondern kann bereits vor dem Bau der Maschine sagen, wie lange eine Bearbeitung dauert und was für eine Taktzeit damit zu realisieren ist. Das Entgraten einer großen Batteriewanne dauert demzufolge etwa 80 Sekunden. „Bei einem Roboterprozess sind solche Prozessangaben zu Schnittwerten noch nicht ganz so üblich wie bei einer CNC-Maschine. Je nach Positionierung des Roboters erzeugen gleiche Daten andere Ergebnisse“, sagt Jannik Weiss. 

Aufgrund der durchweg positiven Ergebnisse wollen KADIA und MAPAL ihre Zusammenarbeit vertiefen. Weitere Versuche für unterschiedliche Bearbeitungsprozesse sind bereits in Planung.


Kathrin Rehor, PR Project Manager at MAPAL

Contact

Kathrin Rehor Public Relations Kathrin.Rehor@mapal.com Phone: +49 7361 585 3342


Further case studies