Para a proteção das peças eletrônicas como, por exemplo, sistema de baterias ou potência eletrônica, contra influências ambientais exteriores e para a fixação dos componentes no espaço interior a fim de garantir o funcionamento sem problemas durante a operação do veículo, são utilizadas diferentes carcaças. As exigências às carcaças dependem do sistema eletrônico e do conceito de acionamento. Atualmente, são utilizados diferentes materiais e processos de fabricação.
CARACTERÍSTICAS
Componentes frágeis de parede fina (suscetíveis a vibração)
Construção como um tanque fundido ou como uma construção em estrutura feita de perfis ocos
Alumínio parcialmente com baixo teor de silício
Grande área (2 × 3 m)
Principalmente operações de furação e fresamento e rosqueamento
Exigências de precisão e superfície para buchas de cabos e conexões de refrigeração
Devido ao tamanho crescente da bateria, são usados conceitos modulares para diferentes classes e faixas de desempenho. Por esta razão, perfis de alumínio extrusado são soldados para formar uma carcaça.
EXIGÊNCIAS DA USINAGEM
Material fino com múltiplas camadas
Furação: Vibrações e formação de rebarba. Formação de anéis na ferramenta → Fresamento helicoidal / Furação por interpolação evita formação de rebarba e anéis
Fresamento: Material fino é propenso a oscilações → Menos vibrações através da geometria de corte otimizada
As carcaças fundidas de alumínio são usadas principalmente para acomodar potência eletrônica ou bateria com menor sistemas para veículos híbridos. As estruturas complexas das carcaças são desenvolvidas com canais de refrigeração integrados.
EXIGÊNCIAS DA USINAGEM
Fresamento de superfícies vedantes (exigências de superfície parcialmente especial)
Fresamento de superfícies de admissão para sistema eletrônico e células de bateria em caso de maior alcance da ferramenta
Furação dos furos principais (> 50 furos por peça)
Visão geral das ferramentas
1 / 9
Standard programme for the machining of aluminium structural parts
Highly positive cutting edge geometry
Reduced cutting forces
Low vibration cut
2 / 9
OptiMill-SPM-Rough
Low vibration roughing with deep cutting depth
3 / 9
OptiMill-SPM
Ideal for making openings or pockets
Solid carbide design or with brazed PCD cutting edges
4 / 9
OptiMill-SPM-Finish
Finishing of great depths in one go
Strong performance with high wraps
5 / 9
Tritan-Drill-Alu
Creation of core holes
Three cutting edges for the highest feed rates
Highest positioning accuracy through self-centring cross cutting edge
6 / 9
MEGA-Drill-Alu
Solid carbide drill
Drilling with lower cycle time
Focus on chip formation
Effective drilling processes with a larger number of equal diameters
7 / 9
FaceMill-Diamond-ES
PCD face milling cutter
Roughing and finishing of face surface
Machining face surfaces with different stock removal using a single tool
Roughing and finishing operations possible
8 / 9
OptiMill-Diamond-SPM
PCD milling cutter
Circular milling operations of various diameters and surfaces
Less tool changes thanks to flexible tool deployment
9 / 9
OptiMill-Alu-HPC-Pocket
Corner milling cutter
Pocket milling of aluminium materials
Optimum chip removal
Optimum stability
1 / 5
PCD milling cutter overview
2 / 5
PCD milling cutter with alternately arranged cutting edges
Low cutting forces over the entire machining depth
3 / 5
Spiralled PCD milling cutter
Finishing of thin-walled structures
4 / 5
PCD Helix milling cutter
Trimming with a large cutting depth
5 / 5
PCD face milling cutter
Face milling for a cutting depth of up to 10 mm
Creation of defined surface profiles for sealing and contact surfaces