Carcasa para el suministro energético

Battery tray and power electronics in CAD representation

Se utilizan distintas carcasas para proteger los componentes electrónicos, como por ejemplo el sistema de batería o la electrónica de potencia, frente a influencias ambientales externas y para la fijación de componentes en el interior, a fin de garantizar su funcionamiento óptimo durante el accionamiento del vehículo. Los requisitos de la carcasa dependen del sistema electrónico y del concepto de propulsión. Actualmente, se utilizan diferentes materiales y procesos de fabricación.

CARACTERÍSTICAS

  • Componentes inestables de paredes finas (propensos a vibraciones)
  • Estructura de cubeta fundida o de bastidor con perfil hueco
  • Parcialmente en aluminio con bajo contenido de silicio
  • Grandes dimensiones (2 x 3 m)
  • Principalmente operaciones de taladrado y fresado, y roscas
  • Requisitos de precisión y superficie para pasacables y conexiones de refrigeración


Resumen de herramientas

  • Tool overview for the machining of aluminium structural parts
    1 / 9

    Programa estándar para el mecanizado de componentes estructurales de aluminio

    • Geometría de cuchilla muy positiva
    • Fuerzas de corte reducidas
    • Corte con pocas vibraciones
  • OptiMill-SPM-Rough
    2 / 9

    OptiMill-SPM-Rough

    • Low vibration roughing with deep cutting depth
  • OptiMill-SPM
    3 / 9

    OptiMill-SPM

    • Ideal for making openings or pockets
    • Solid carbide design or with brazed PCD cutting edges
  • OptiMill-SPM-Finish
    4 / 9

    OptiMill-SPM-Finish

    • Finishing of great depths in one go
    • Strong performance with high wraps
  • Tritan-Drill-Alu
    5 / 9

    Tritan-Drill-Alu

    • Creation of core holes
    • Three cutting edges for the highest feed rates
    • Highest positioning accuracy through self-centring cross cutting edge
  • DRILLING WITH LOWER CYCLE TIME  MEGA-Drill-Alu solid carbide drill
    6 / 9

    MEGA-Drill-Alu

    • Solid carbide drill
    • Drilling with lower cycle time
    • Focus on chip formation
    • Effective drilling processes with a larger number of equal diameters
  • ROUGHING AND FINISHING OF FACE SURFACES ƒ FaceMill-Diamond-ES PCD face milling cutter
    7 / 9

    FaceMill-Diamond-ES

    • PCD face milling cutter
    • Roughing and finishing of face surface
    • Machining face surfaces with different stock removal using a single tool
    • Roughing and finishing operations possible
  • MILLING VARIOUS DIAMETERS ƒ OptiMill-Diamond-SPM PCD milling cutter
    8 / 9

    OptiMill-Diamond-SPM

    • PCD milling cutter
    • Circular milling operations of various diameters and surfaces
    • Less tool changes thanks to flexible tool deployment
  • Corner Milling cutter Pocket milling of aluminium materials
    9 / 9

    OptiMill-Alu-HPC-Pocket

    • Corner milling cutter
    • Pocket milling of aluminium materials
    • Optimum chip removal
    • Optimum stability
  • PCD milling cutter overview
    1 / 5

    PCD milling cutter overview

  • PCD milling cutter with alternately arranged cutting edges
    2 / 5

    PCD milling cutter with alternately arranged cutting edges

    • Low cutting forces over the entire machining depth
  • Spiralled PCD milling cutter
    3 / 5

    Spiralled PCD milling cutter

    • Finishing of thin-walled structures
  • PCD Helix milling cutter
    4 / 5

    PCD Helix milling cutter

    • Trimming with a large cutting depth
  • PCD face milling cutter
    5 / 5

    PCD face milling cutter

    • Face milling for a cutting depth of up to 10 mm
    • Creation of defined surface profiles for sealing and contact surfaces

Case studies from the energy supply sector


Other electrified components