I materiali altamente resistenti e leggeri allo stesso tempo hanno un ruolo centrale nell’aeronautica. La combinazione di materiali innovativi contribuisce a ridurre il peso, aumentare la robustezza e la resistenza alla corrosione e semplificare l’assemblaggio grazie a un design integrativo. Mentre i componenti strutturali in alluminio, titanio o acciai ad alta resistenza vengono processati su centri di lavorazione o macchine a portale, l’assemblaggio finale viene eseguito da macchine a guida manuale, unità di avanzamento o robot.
Assortimento di utensili per la lavorazione del titanio
Fresatura con taglienti fissi
OptiMill-Titan-HPC
Frese a spallamento retto
Frese a spallamento retto a quattro taglienti per sgrossatura e finitura del titanio
La speciale preparazione dei taglienti garantisce superfici perfette
Eccellente stabilità dell’utensile grazie al grande diametro del nucleo e alla sua posizione rialzata rispetto al codolo
Diversi raggi d’angolo disponibili
Range di Ø: 6,00 - 25,00 mm
OptiMill-Tro-Titan
Frese per lavorazioni trocoidali
Fresa per lavorazioni trocoidali a cinque taglienti
Massimo volume di asportazione di materiale e superfici di qualità superiore
Passo differenziato ottimizzato
Elemento di taglio sottoposto ad equilibratura di precisione per proteggere il mandrino della macchina e garantire elevata durata
Profondità di passata assiale fino a 3xD
Range di Ø: 6,00 - 25,00 mm
Frese con taglienti sostituibili
NeoMill-Titan-2-Corner
Frese a spallamento retto
Frese a spallamento retto con inserti a fissaggio radiale a due taglienti
Forma base positiva per la lavorazione di componenti sensibili alle vibrazioni
Profondità di passata assiale fino a 10 mm
Range di Ø: 40,00 - 100,00 mm
NeoMill-Titan-2-Shell
Frese cilindriche frontali
Frese cilindriche frontali con inserti a fissaggio radiale a due taglienti
Soluzione ideale per la fresatura a spallamento retto profonda e per la rifilatura con elevate profondità di passata assiale fino a 57 mm
Range di Ø: 32,00 - 80,00 mm
NeoMill-2/4-HiFeed90
Frese a spallamento retto/90° a elevato avanzamento
Sistema di utensili universale per la massima produttività
Range di ø: 16,00 - 200,00 mm
Foratura
MEGA-Speed-Drill-Titan
Punta in metallo duro integrale
Punta ad elevata velocità con due taglienti
Quattro margini di guida per precisione di superficie e cilindricità esatte (classe di tolleranza raggiungibile: IT9, IT8)
Tagliente convesso con margine angolare per la massima stabilità
Innovativo profilo a zigrinatura incrociata per la protezione dei margini di guida
Massima resistenza all’usura e al calore
Range di Ø: 3,00 - 20,00 mm
Alesatura e barenatura di precisione
FixReam-FXR
Alesatore ad alte prestazioni con codolo cilindrico
Alesatore ad alte prestazioni in metallo duro integrale
Con scanalatura dritta per foro passante e foro cieco
Con scanalatura obliqua sinistra per foro passante
Ideale per brevi tempi di ciclo
Disponibilità in diversi materiali da taglio e rivestimenti
Range di Ø: 2,80 - 20,20 mm
Alesatori a testina intercambiabile HPR
Alesatore a testina intercambiabile con attacco HFS
Sistema a testina intercambiabile altamente preciso in versione fissa con taglienti brasati
Esatta concentricità e precisione di cambio di < 3 µm
Massima redditività grazie al concetto di modularità del sistema
Idoneo per la lubrificazione minimale
Range di Ø: 7,00 - 65,00 mm
Barenatura
Boring in titanium
Boring tools with tangential technology
Component-specific custom tools for highest productivity, economic processes and stable machining concepts
CTHQ and FTHQ tangential indexable inserts
Special arc shaped land for optimal machining results at a length-to-diameter ratio >3.5xD
Titanium and titanium alloys are predestined for use in aerospace. High demands are placed on workpiece material strength and corrosion resistance in relation to their specific weight. This results in a wide range of applications extending from small mechanically processed structural parts to load-bearing parts in the fuselage or blades in the engine.
Machining example torsion link
1 / 5
Fine boring tool
Arrangement of the cutting edges
Perfect concentricity of the bores
Optimal surface roughness
Perfect bore geometry
Stable machining thanks to guide pads
High accuracy of repetition and easy tool setting
2 / 5
NeoMill-Titan-2-Shell
Maximum machining rates
Optimum chip removal
Very quiet running
Variable cooling concept
Cutting edges with various corner radii can be deployed
Variety of cutting materials available
3 / 5
MEGA-Speed-Drill-Titan
140° point angle
Little development of built-up edge due to extremely smooth coating
Four margin lands (best roundness values)
Convex cutting edge
Internal coolant supply
Newly designed chip flute (optimal chip removal)
Efficient coolant flow (avoids friction and heat at the cutting edge)
4 / 5
OptiMill-Titan-HPC
Special edge preparation (stable cutting edge)
Optimal pitch (stable cut, smooth running)
Core rise for more stability
5 / 5
FixReam
Solid carbide or brazed design
Bore quality: H7
DLC coating for optimal performance
Configurable diameter
Design for through or blind bores
Suitable for minimum quantity lubrication (MQL)
Machining example hingeline
1 / 6
Deburring tools made from solid carbide
With these custom tools in a special spherical shape, the bore entrance and exit of the main bore as well as the fixing bore are deburred through circilar milling.
2 / 6
NeoMill-Titan-2-Corner
High machining rates
Very quiet running
Cutting edges with various corner radii can be deployed
Variety of cutting materials available
3 / 6
MEGA-Speed-Drill-Titan
Extends tool life by 30% compared to previous solutions
Drilling specialist for high cutting speeds and feed rates
Short cycle times
4 / 6
TTD replaceable head drill, custom drill, boring bar
TTD replaceable head drill for piloting the first lug
Custom drill with additional guide element at the neck for medium machining of lugs from both sides
Bearing-guided boring bar for precise finishing of the main bore from one side
5 / 6
OptiMill-Titan-HPC
Increases tool life by 35%
Perfect solution for roughing, medium machining and finishing
Excellent price-performance ratio
Fits Mill Chuck, System HB
Optimal pitch (stable cut, smooth running)
Core rise for more stability
6 / 6
OptiMill-Tro-Titan
Extends tool life by 10% compared to previous solutions
High removal rates possible
Unequal spacing of the cutting edges
Special coating to avoid deposits
Specially designed chip flute for optimum chip removal
Machining example valve housing
1 / 7
Solid carbide drill
For difficult drilling applications
Innovative lead geometry for good chip removal and low cutting pressure
Significantly more performance, up to twice the feed rate compared to previous solutions
2 / 7
Boring tool with interchangeable blades
Three-stage boring tool for medium machining
No setting of cutting edges necessary
Economical tool concept for roughing bores
High machining rates possible
Indexable inserts with excellent thermal stability
3 / 7
Boring tool made of solid carbide with four edges
Long tool life thanks to special coating
Coating protects the cutting edges against high temperatures and excessive wear and tear
The internal coolant supply and chip channel geometries ensure efficient chip removal
4 / 7
HPR replaceable head reamer with six edges
Perfect concentricity of the bores
High feed rate possible and therefore less machining time
Adjustable adapter enables precise tool settings and eliminates spindle errors
Complete finishing in a single step
5 / 7
Solid carbide drill with three edges
Special triple-edge geometry
Perfect positioning of the drill
Highly suitable for inclined bore entrances or cross bores
6 / 7
Boring tool made of solid carbide with four edges
Special geometry
Stable machining
Optimal guide into the bore
Four cutting edges ensure the right geometry of the bore prior to finishing
7 / 7
HPR reamer with six edges
Can be repaired by desoldering/soldering the blades
Perfect roundness of the bore due to the matching multi-cutting edge geometry
Lower weight means lower fuel consumption resulting in fewer emissions. Therefore, many different applications for titanium materials can be found in automotive engineering. Starting with engine components, through to transmission parts and suspension elements as well as exhausts. The automotive manufacturers’ objective is to make vehicles lighter and therefore more environmentally friendly.
Machining example control arm
1 / 4
MEGA-Speed-Drill-Titan
Extends tool life by 30% compared to previous solutions
Drilling specialist for high cutting speeds and feed rates
Short cycle times
2 / 4
OptiMill-Titan-HPC
Four-edge roughing milling cutter
Polished chip flute
Heat-resistant high-performance coating
Unequal cutting edge (smooth cut)
3 / 4
HPR replaceable head reamer
Radial run-out and changeover accuracy less than 3 μm
Easy to handle
Maximum precision and productivity
Internal coolant supply to directly cool the cutting edges
Particularly economical (replaceable head)
4 / 4
NeoMill-Titan-2-Shell
Maximum machining rates
Optimum chip removal
Very quiet running
Variable cooling concept
Cutting edges with various corner radii can be deployed
Titanium is practically the perfect workpiece material for medical technology as it can be implemented extensively due to its bio-compatibility (i.e. its stability in biological surrounding – anti-allergenic), low thermal conductivity and anti-magnetic behaviour.
Machining example hip joint
1 / 1
OptiMill-Tro-Titan
Heat-resistant high-performance coating
Specially designed chip flute for optimum chip removal
Heat reduction in the cutting zone
Machining example bone plates
1 / 2
OptiMill-Tro-Titan
Heat-resistant high-performance coating
Specially designed chip flute for optimum chip removal
Heat reduction in the cutting zone
2 / 2
MEGA-Speed-Drill-Titan
Extends tool life by 30% compared to previous solutions
Drilling specialist for high cutting speeds and feed rates