Divers boîtiers sont utilisés pour protéger les composants électroniques, tels que le système de batterie ou l'électronique de puissance, contre les influences extérieures de l'environnement et pour fixer les composants à l'intérieur afin d'assurer leur parfait fonctionnement pendant l'utilisation du véhicule. Les exigences relatives aux boîtiers dépendent du système électronique et du concept d'entraînement. Actuellement, différents matériaux et procédés de fabrication sont utilisés.
CARACTÉRISTIQUES
Composants fragiles à parois minces (sensibles aux vibrations)
Structure en cuve coulée ou construction à cadre en profilés creux
Aluminium partiellement pauvre en silicium
Grande surface (2 x 3 m)
Opérations de forage, de fraisage et de filetage, principalement
Exigences de précision et de surface pour les passages de câble et les raccords de refroidissement
Aufgrund der zunehmenden Größe der Batterie kommen modulare Konzepte für unterschiedliche Leistungsklassen und Reichweiten zum Einsatz. Hierzu werden Extrusionsprofile aus Aluminium zu einem Gehäuse verschweißt.
ZERSPANUNGSANFORDERUNGEN
Dünnes Material mit mehreren Lagen
Bohren: Vibrationen und Gratbildung. Ringbildung am Werkzeug → Helixfräsen / Orbitalbohren verhindert Gratbildung und Ringe
Fräsen: Dünnes Material neigt zum Aufschwingen → Weniger Vibrationen durch optimierte Schneidengeometrie
Für die Unterbringung der Leistungselektronik oder kleinere Batteriesysteme für Hybridfahrzeuge werden meist Druckgussgehäuse aus Aluminium verwendet. Die komplexen Gehäusestrukturen werden mit integrierten Kühlkanälen ausgeführt.
ZERSPANUNGSANFORDERUNGEN
Fräsen von Dichtflächen (teilweise spezielle Oberflächenanforderungen)
Fräsen von Aufnahmeflächen für Elektronik und Batteriezellen bei langer Werkzeugauskragung
Bohren von Kernlöchern (> 50 Bohrungen pro Bauteil)
Werkzeugübersicht
1 / 9
Standardprogramm zur Bearbeitung von Strukturbauteilen aus Aluminium
Hoch positive Schneidengeometrie
Reduzierte Schnittkräfte
Vibrationsarmer Schnitt
2 / 9
OptiMill-SPM-Rough
Vibrationsarmes Schruppen mit großer Schnitttiefe
3 / 9
OptiMill-SPM
Ideal zur Herstellung von Durchbrüchen oder Taschen
Ausführung aus Vollhartmetall oder mit gelöteten PKD-Schneiden
4 / 9
OptiMill-SPM-Finish
Schlichten von großen Tiefen in einem Zug
Starke Performance bei hohen Umschlingungen
5 / 9
Tritan-Drill-Alu
Herstellung von Kernlochbohrungen
Drei Schneiden für höchste Vorschübe
Höchste Positioniergenauigkeit durch selbst zentrierende Querschneide
6 / 9
MEGA-Drill-Alu
VHM-Bohrer
Bohren mit geringer Zykluszeit
Fokus auf Spanbildung
Effektive Bohrprozesse bei größerer Anzahl an gleichen Durchmessern
7 / 9
FaceMill-Diamond-ES
PKD-Planfräser
Schruppen und Schlichten von Planflächen
Planflächen mit unterschiedlichem Aufmaß mit einem Werkzeug bearbeiten
Schrupp- und Schlichtoperationen möglich
8 / 9
OptiMill-Diamond-SPM
PKD-Fräser
Zirkulare Fräsoperationen verschiedener Durchmesser und Flächen
Reduktion der Werkzeugwechsel dank flexiblem Einsatz des Werkzeugs
9 / 9
OptiMill-Alu-HPC-Pocket
Eckfräser
Taschenfräsen von Aluminiumwerkstoffen
Optimaler Abtransport der Späne
Optimale Stabilität
1 / 5
PKD Fräser für spezielle Bearbeitungsanforderungen
2 / 5
PKD-Fräser mit wechselseitig angeordneten Schneiden
Geringe Schnittkräfte über die gesamte Bearbeitungstiefe
3 / 5
Spiralisierter PKD-Fräser
Schlichten von dünnwandigen Strukturen
4 / 5
PKD-Helixfräser
Besäumen mit großer Schnitttiefe
5 / 5
PKD-Planfräser
Planfräsen mit Schnitttiefen von bis zu 10 mm
Erzeugung definierter Oberflächenprofile für Dicht- und Anlageflächen
Der dreischneidige FlyCutter von MAPAL ist optimal geeignet zum Entgraten von Batteriewannen. Roboterhersteller KADIA ist begeistert von dem PKD-bestückten Fräser.
Warum Fräsen anstelle von Bohren eine sinnvolle Alternative sein kann? MAPAL zeigt, wie höhere Prozesssicherheit und kürzere Bearbeitungszeiten erreicht werden.