01.01.2018
Dry Machining of Multilayer Composites in Aircraft Construction
MAPAL develop special tools for common combinations
The challenges that tool manufacturers have to overcome for optimum solutions in final assembly are diverse. Not only the different materials or the demand for the highest process reliability play a decisive role here, but also the cooling concept, narrow tolerance specifications and the machine used. MAPAL has been researching intensively into these challenges and has brought appropriate tool concepts onto the market. This includes the reliable dry machining of material combinations such as CFRP/aluminium or different aluminium alloys.
Materials that are both high-strength and light are of vital importance in the aerospace sector. Thanks to new material combinations, the weight can be further reduced, strength and corrosion resistance increased and assembly can be simplified by means of an integrated design. While structural parts made of aluminium, titanium or high-strength steels are machined on machining centres or portal machines, parts in final assembly are mostly machined by hand-held machines, drill feed units or robots.
The requirements for tool manufacturers and tools for final assembly therefore differ significantly from those for part manufacturing. While machined parts in part manufacturing have a value of around 1,000 to 50,000 Euros, parts in final assembly, depending on the assembly progress, are significantly more cost-intensive with a value of around 50,000 to 2 million Euros. Faulty machining must either be manually reworked, which is time-consuming and expensive, or the parts have to be completely replaced. For this reason, the suppliers for final assembly must be carefully chosen.
Challenges for tool manufacturers in final assembly
State-of-the-art: Manufacturing bores for rivet connections
Aircraft manufacturers use rivet connections for connecting the outer skin to the structural parts underneath. For this purpose, innumerable bores are drilled. To achieve the lowest resistance to the airstream as possible (low cW value), the rivet heads are countersunk in the outer skin. For this, an additional countersinking must be added to the bore entrance. In the past, a process with up to four individual machining steps was often required (drilling from the solid, boring, reaming, countersinking).
Today machining in just one step, where bore and countersink are realised in one process, is state of the art. Only in this way was automatic machining using robots possible. Previously this type of machining was realised with minimum quantity lubrication (MQL). After machining, the parts had to be disassembled, cleaned and remounted. In addition the cooling medium got inside the aircraft where further assembly steps were taking place at the same time. The demand for tools for dry machining different composite workpiece materials
was the consequence.
Call for dry machining
Worauf liegt der Fokus bei Bearbeitungen in einem Schritt?
Im Gegensatz zu einem mehrstufigen Bohrprozess muss das Kombinationswerkzeug beim Bearbeiten alle Arbeitsschritte (Vollbohren, Aufbohren, Reiben und Senken) übernehmen. Es fertigt die Bohrung für die Nietverbindung in einem Schritt. Damit ist zum einen die Position der Bohrung und zum anderen die Flucht zwischen dem zylindrischen Teil der Bohrung und der Senkung gewährleistet. Ein Winkelfehler oder Versatz wie bei mehrstufigen Operationen ist ausgeschlossen.
Qualitätsmerkmale der Bohrung:
- Durchmesser
- Übergangsradius
- Senkwinkel
Neben diesen Qualitätsmerkmalen spielt der Austrittsgrat eine große Rolle. Sollte sich bei einer mehrstufigen, manuellen Bohrbearbeitung, am Bohrungsaustritt ein Grat gebildet haben, so kann der Mitarbeiter diesen ohne großen Aufwand mit Hilfe eines Kegelsenkers entfernen. Läuft der Prozess allerdings automatisiert in nur einem Schritt ab, ist ein manuelles Entgraten nicht möglich. Daher muss das entsprechende Werkzeug in der Lage sein, nahezu gratfrei zu bohren. Die Flugzeugbauer geben hier in der Regel eine maximale Grathöhe von 0,1 mm vor. Zum Grat am Bohrungsaustritt kommt der interlaminare Grat zwischen den Lagen. Bildet sich dieser, müssen die Mitarbeiter des Flugzeugbauers den Schichtverbund am Ende der Bohroperationen demontieren, um den interlaminaren Grat zu entfernen. Diese Demontage ist zeitaufwendig und kostenintensiv, daher darf auch dieser Grat erst gar nicht entstehen.
Wie wirkt sich das Maschinenkonzept auf die Zerspanung aus?
Das Maschinenkonzept beeinflusst maßgeblich die Werkzeuggeometrie. CNC-Anwendungen auf Bearbeitungszentren oder Portalmaschinen zeichnen sich durch hohe Steifigkeit und stabile Maschinenführung aus. Das Werkzeug wird dadurch sehr gut in der Bohrung geführt. Anwendungen mit Bohrvorschubeinheiten, Robotern oder Handbohrmaschinen sind weniger stabil und erfordern für hohe Genauigkeiten und damit Werkzeuge mit zusätzlichen Stabilisierungsmerkmalen.
Eine weitere Besonderheit beim Einsatz von Bohrvorschubeinheiten sind die sogenannten „Nosepieces“, auch Führungsbuchsen genannt. Durch eine lange schmale Führungsbuchse transportiert das System die Späne über das Werkzeug ab. Das Ziel der Späne ist ein Absaugkanal am Ende der Führungsbuchse. Damit dieser Prozess funktioniert, sind lange Spanräume notwendig. Der Werkzeughersteller muss diese richtig dimensionieren und an die jeweilige Bearbeitung anpassen.
Für die Bohrungen an der Außenhaut (Rumpf und Flügel) setzen Flugzeugbauer meist Portalmaschinen oder Roboter ein. Die unzugänglichen Bohrbearbeitungen, hauptsächlich in der Endmontage realisieren die Mitarbeiter dann mit Bohrvorschubeinheiten oder mit Handbohrmaschinen gebohrt.
Welche Herausforderungen bestimmen die Bearbeitung von Schichtverbundwerkstoffen?
Was ist bei Werkzeugen für die Bearbeitung von Schichtverbundwerkstoffen zu beachten?
Bei der Paarung CFK-Titan werden Werkzeuge benötigt, deren Schneidkante stabil genug ist, um dem duktilen Titan zu widerstehen. Gleichzeitig muss die Schneide scharf sein, um das CFK zu schneiden. Ob ein Bohrprozess allein ausreicht, um die Bohrung zu fertigen, oder ob die Bohrung im Nachgang noch gerieben werden muss, hängt bei dieser Materialkombination von der geforderten Bohrungstoleranz ab.
Werkzeuge zum Bohren von Schichtverbundwerkstoffen aus unterschiedlichen Aluminiumlegierungen, beispielsweise 7050 und 2024, benötigen keine verschleißhemmende Beschichtung. Denn die im Flugzeugbau verwendeten Aluminiumsorten enthalten wenig bis kein Silizium und können somit nahezu verschleißfrei gebohrt werden. Dies unterscheidet diesen Schichtverbund bei der Bearbeitung entscheidend von Verbunden, die CFK enthalten.
Werkzeuge, die für Materialkombinationen eingesetzt werden, die CFK enthalten, versehen die Werkzeughersteller beispielsweise generell mit einer Diamantschicht. Diese wirkt der Abrasion des CFK entgegen und ermöglicht hohe Standzeiten. Ein Nachschliff dieser Werkzeuge ist nicht möglich, da die verwendete Diamantschicht eine sehr hohe Härte aufweist.
Was müssen Werkzeughersteller bei der Auslegung berücksichtigen, um Prozesssicherheit bei der Bearbeitung zu gewährleisten?
- Qualitätsanforderung
- Material
- Bearbeitungsprozess
Da die Großzahl der Bohrungen im Flugzeug aufgrund der Nieten eine Senkung benötigen, ist der Bohrungsaustritt kritischer zu bewerten, um kostenintensive Nacharbeiten auszuschließen.
Was genau müssen die Werkzeuge verhindern?
- Delaminationen
- Faserüberstände
- Gratbildung
Wichtig ist bei der Bearbeitung aller Einzelmaterialien sowie aller Schichtverbundwerkstoffe zudem die Spanabfuhr. Ist diese nicht gewährleistet, liegt die Bohrungsqualität beim Trockenbohren schnell deutlich außerhalb der geforderten Toleranzen. Die größte Herausforderung bei der Entwicklung eines Trockenbohrers stellt aber die Anpassung der Werkzeuggeometrie auf das labile Bearbeitungssystem der Bohrvorschubeinheiten in Kombination mit Schnittparametern und Spannsystemen (ConcentricCollet) dar.
MAPAL Kombinationswerkzeug für die Trockenbearbeitung von Alu-Alu-Kombinationen
Im Einsatz bei einem Flugzeughersteller: das Bohr-Senk-Werkzeug zur Bearbeitung von Alu-Alu-Kombinationen
- Einsatzort: Längsnaht im hinteren Hauptfeld
- Durchmesser: 4,748 mm
- Senkstufe: 100°
- Drehzahl: 2.959 min-1
- Vorschub: 0,154 mm
- Standzeit: 1600 Bohrungen
- Toleranz: 4,73-4,805 mm
Bohr-Senk-Werkzeug zur Trockenbearbeitung von CFK-Alu-Kombinationen
Um Schichtverbundwerkstoffe aus CFK und Aluminium prozesssicher zu bearbeiten, hat MAPAL ebenfalls einen Bohrer mit Senkstufe zur Trockenbearbeitung entwickelt. Die spezielle Geometrie des Werkzeugs sorgt dafür, dass die entstehende Bearbeitungswärme nicht an das Bauteil abgegeben wird. Zudem werden weder das Bauteil noch die Arbeitsumgebung durch Kühlmittel verschmutzt. Der zweischneidige Bohrer aus Vollhartmetall vereint die Eigenschaften eines Bohrers zur Bearbeitung von Aluminium mit denen eines Bohrers zur CFK-Bearbeitung. Durch die speziell ausgeführten Spanräume ist die prozesssichere Abfuhr der Späne sichergestellt. Da CFK ein extrem abrasiver Werkstoff ist, ist der Bohrer diamantbeschichtet. Damit wird gegenüber einem unbeschichteten Bohrer die achtfache Standzeit erreicht.
Das Bohr-Senk-Werkzeug zur Trockenbearbeitung von CFK-Alu-Kombinationen ist erfolgreich bei Kunden im Einsatz. Es wird mit einer Drehzahl von 5.000 min-1 und einem Vorschub von 0,1 mm gearbeitet. Das Werkzeug überzeugt in der Praxis nicht nur durch die erreichten Ergebnisse hinsichtlich Prozesssicherheit, Standzeit und Bearbeitungsergebnis, sondern auch durch den ruhigen Bohrprozess.