Different housings are used to protect electronic components, such as battery systems or power electronics, from external environmental influences and to attach the components to the interior in order to ensure that they function properly during vehicle operation. The requirements for the housing depend on the electronic system and drive concept. Different materials and manufacturing processes are currently used.
FEATURES
Unstable, thin-walled components (susceptible to vibration)
Construction as a cast tub or as a frame construction made of hollow profiles
Partly low-silicon aluminium
Large area (2 x 3 m)
Mainly drilling and milling operations and threading
Accuracy and surface requirements for cable bushing and cooling connections
Due to the increasing size of the battery, modular concepts for different performance classes and ranges are used. For this reason, extruded aluminium profiles are welded to form a housing.
MACHINING REQUIREMENTS
Thin material with several layers
Drilling: Vibrations and burr formation. Ring formation on the tool → Helix milling/orbital drilling prevents burrs and rings
Milling: Thin material tends to vibrate → Fewer vibrations through optimised cutting edge geometry
Die-cast aluminium housings are mostly used to accommodate power electronics or smaller battery systems for hybrid vehicles. The complex housing structures are designed with integrated cooling channels.
MACHINING REQUIREMENTS
Milling of sealing surfaces (in some cases specific surface requirements)
Milling of mounting surfaces for electronics and battery cells with long tool overhang
Drilling of core holes (> 50 holes per component)
Tool overview
1 / 9
Standardprogramm zur Bearbeitung von Strukturbauteilen aus Aluminium
Hoch positive Schneidengeometrie
Reduzierte Schnittkräfte
Vibrationsarmer Schnitt
2 / 9
OptiMill-SPM-Rough
Vibrationsarmes Schruppen mit großer Schnitttiefe
3 / 9
OptiMill-SPM
Ideal zur Herstellung von Durchbrüchen oder Taschen
Ausführung aus Vollhartmetall oder mit gelöteten PKD-Schneiden
4 / 9
OptiMill-SPM-Finish
Schlichten von großen Tiefen in einem Zug
Starke Performance bei hohen Umschlingungen
5 / 9
Tritan-Drill-Alu
Herstellung von Kernlochbohrungen
Drei Schneiden für höchste Vorschübe
Höchste Positioniergenauigkeit durch selbst zentrierende Querschneide
6 / 9
MEGA-Drill-Alu
VHM-Bohrer
Bohren mit geringer Zykluszeit
Fokus auf Spanbildung
Effektive Bohrprozesse bei größerer Anzahl an gleichen Durchmessern
7 / 9
FaceMill-Diamond-ES
PKD-Planfräser
Schruppen und Schlichten von Planflächen
Planflächen mit unterschiedlichem Aufmaß mit einem Werkzeug bearbeiten
Schrupp- und Schlichtoperationen möglich
8 / 9
OptiMill-Diamond-SPM
PKD-Fräser
Zirkulare Fräsoperationen verschiedener Durchmesser und Flächen
Reduktion der Werkzeugwechsel dank flexiblem Einsatz des Werkzeugs
9 / 9
OptiMill-Alu-HPC-Pocket
Eckfräser
Taschenfräsen von Aluminiumwerkstoffen
Optimaler Abtransport der Späne
Optimale Stabilität
1 / 5
PKD Fräser für spezielle Bearbeitungsanforderungen
2 / 5
PKD-Fräser mit wechselseitig angeordneten Schneiden
Geringe Schnittkräfte über die gesamte Bearbeitungstiefe
3 / 5
Spiralisierter PKD-Fräser
Schlichten von dünnwandigen Strukturen
4 / 5
PKD-Helixfräser
Besäumen mit großer Schnitttiefe
5 / 5
PKD-Planfräser
Planfräsen mit Schnitttiefen von bis zu 10 mm
Erzeugung definierter Oberflächenprofile für Dicht- und Anlageflächen
Der dreischneidige FlyCutter von MAPAL ist optimal geeignet zum Entgraten von Batteriewannen. Roboterhersteller KADIA ist begeistert von dem PKD-bestückten Fräser.
Warum Fräsen anstelle von Bohren eine sinnvolle Alternative sein kann? MAPAL zeigt, wie höhere Prozesssicherheit und kürzere Bearbeitungszeiten erreicht werden.