03.11.2022

Efficient deburring with robots

KADIA system processes battery trays

If a milling cutter is guided by a robot, the machining is fundamentally more unstable than on a machining centre. To reliably ensure the shortest cycle times in industrial production in this instance, KADIA is using MAPAL’s FlyCutter with three cutting edges in a newly developed system with three robots for deburring battery trays for electric vehicles.

The PCD milling cutter FlyCutter from MAPAL clamped in the robot from KADIA in front of the battery tray.
  • The PCD milling cutter FlyCutter from MAPAL clamped in the robot from KADIA in front of the battery tray.
  • Jannik Weiss from KADIA and Norbert Meier from MAPAL in discussion.
  • A battery tray made of aluminium profiles.
  • The KADIA special machine for deburring in layout with three robots.
  • The PCD-tipped FlyCutter with three cutting edges from MAPAL.
  • The component shows chatter marks.

The story of Nürtingen-based KADIA Produktion GmbH + Co began back in 1959 with the production of honing tools. The first honing machines were developed ten years later. The company tapped into another branch of business in 1981 with the manufacture of deburring machines. Today, KADIA is a leading specialist in honing and deburring technology and currently employs 200 people.

Its main customers are car manufacturers and suppliers, construction and agricultural machinery manufacturers, wind power plant producers and the aerospace industry. While the manufacturer offers standard machinery in different sizes for honing, in principle, custom machines are built for deburring. Customers include major machine manufacturers that bring KADIA on board as a deburring expert.

Jannik Weiss from KADIA and Norbert Meier from MAPAL in discussion.
Jannik Weiss, Sales Specialist Deburring & Robotics at KADIA (left), and Norbert Meier, Technical Consultant at MAPAL, are very happy with the results of this joint project.  ©MAPAL

Pencil test for burrs

In mechanical machining, a distinction is made between loose and fixed burrs. After deburring, depending on what’s required, the part should have sharp edges, edge rounding or a chamfer, which is why this is also known as edge design. To assess a burr, KADIA uses a simple but meaningful test using the lead of a mechanical pencil extended by five millimetres. If it can be used to remove the burr, then the burr is loose. If the lead breaks, it’s a fixed burr, which needs to either be milled off or can be left in place, as it won’t come off later.

The size of the workpiece is also crucial to machining processes that make use of robots. Guiding the workpiece is favoured for smaller parts. The robot guides the workpiece along fixed processing units. In a tool-guided strategy, the robot arm processes a workpiece firmly clamped in place. “For bigger workpieces, I’m much more skilful with the milling cutter in hand than if I have to move the bulky part,” explains Jannik Weiss, Sales Specialist Deburring & Robotics at KADIA.

Uma bandeja de bateria feita de perfis de alumínio
The aluminium profile tray design is roughly the same size as a double bed frame and is used to hold batteries in an electric vehicle. Deburring ensures the lid fits cleanly and remains tightly sealed after “closing”.  ©KADIA Produktion GmbH + Co.
When a major car manufacturer requested a deburring machine for battery trays in electric vehicles, it soon became clear that the robot would have to guide the tools in this instance. The aluminium frame, welded together from extruded profiles, measures 1,900 x 1,400 x 100 mm. The requirements for KADIA involved milling the separating surfaces and then brushing the burrs created by the milling cutter so that the frames can later be bolted and sealed with a lid. Tasks of this nature are performed more efficiently and flexibly by a robot cell than a machining centre, especially as the surface finish requirements are moderate.

Machining in the test cell

The centrepiece of development at KADIA is a five-by-six-metre test cell with a six-axle industrial robot and a quick-release unit. This enables testing of what is set to go on to become the system. Preliminary tests determine the optimum cutting data and assess stability. The cell is home to 15 changeable units. The robot has automated access with an action radius of 2.70 m to nine of these. Each unit represents a specific function that is used for machining a part. Typically, it consists of a motor spindle with a connection and a cutting tool.

A rotary table as the seventh axle is also part of the equipment of the test cell, which also has enough space to accommodate other systems, such as coolant supply or additional process units. At KADIA, several parts are equipped for various tests in the cell at the same time.

A máquina especial KADIA para rebarbação em layout com três robôs
The custom machine layout requires the use of three robots. Two deburr the front, while the third machines the back. This achieves the optimum cycle rate in industrial production.  ©KADIA Produktion GmbH + Co.

For initial preliminary tests on a dummy part for the battery tray, KADIA used a round-insert milling cutter already in stock in. The tool proved wholly unsuitable for the task. The vibrations that occurred were so severe that even the processing spindle was damaged. Even with low cutting values, the background noise during milling was still noticeable in the adjacent building.

With the task to deliver a suitable milling cutter for the aluminium housing, MAPAL was chosen as the partner of choice. “We evaluate in advance in which tool manufacturer we see the potential for cooperation,” says Jannik Weiss. Although KADIA initially focuses on standard tools, it was a major plus for MAPAL that the tool manufacturer produces custom tools where necessary.

Two milling cutters to choose from

KADIA already used this service in a previous project for which MAPAL developed a special hydraulic chuck. The services of the Aalen-based manufacturer came to be appreciated here. When Norbert Meier, Technical Consultant at MAPAL, was on site to deal with this chuck, the battery tray project was explained to him. Meier had solutions ready right away and brought two milling cutters from MAPAL’s standard range with him on his next visit: the seven-blade face milling cutter IFM751 and the FlyCutter D63 with three cutting edges. Both milling cutters demonstrated they were up to the task in the tests, but to Jannik Weiss’s amazement, the little three-blade milling cutter gave much better results: “What the FlyCutter did there was really great.”
The PCD-tipped FlyCutter with three cutting edges from MAPAL.
The FlyCutter with PCD-tipped milling inserts was developed specifically for unstable machining processes and small connections.  ©KADIA Produktion GmbH + Co.
The component shows chatter marks.
The further the robot arm extends, the greater the risk of vibration and chatter marks. Test series offer conclusions on cutting speed, feed and cutting depth for which a good surface is reliably produced with the milling cutter from MAPAL.  ©KADIA Produktion GmbH + Co.



Further case studies