Different housings are used to protect electronic components, such as battery systems or power electronics, from external environmental influences and to attach the components to the interior in order to ensure that they function properly during vehicle operation. The requirements for the housing depend on the electronic system and drive concept. Different materials and manufacturing processes are currently used.
FEATURES
Unstable, thin-walled components (susceptible to vibration)
Construction as a cast tub or as a frame construction made of hollow profiles
Partly low-silicon aluminium
Large area (2 x 3 m)
Mainly drilling and milling operations and threading
Accuracy and surface requirements for cable bushing and cooling connections
Due to the increasing size of the battery, modular concepts for different performance classes and ranges are used. For this reason, extruded aluminium profiles are welded to form a housing.
MACHINING REQUIREMENTS
Thin material with several layers
Drilling: Vibrations and burr formation. Ring formation on the tool → Helix milling/orbital drilling prevents burrs and rings
Milling: Thin material tends to vibrate → Fewer vibrations through optimised cutting edge geometry
Die-cast aluminium housings are mostly used to accommodate power electronics or smaller battery systems for hybrid vehicles. The complex housing structures are designed with integrated cooling channels.
MACHINING REQUIREMENTS
Milling of sealing surfaces (in some cases specific surface requirements)
Milling of mounting surfaces for electronics and battery cells with long tool overhang
Drilling of core holes (> 50 holes per component)
Tool overview
1 / 9
Standard programme for the machining of aluminium structural parts
Highly positive cutting edge geometry
Reduced cutting forces
Low vibration cut
2 / 9
OptiMill-SPM-Rough
Low vibration roughing with deep cutting depth
3 / 9
OptiMill-SPM
Ideal for making openings or pockets
Solid carbide design or with brazed PCD cutting edges
4 / 9
OptiMill-SPM-Finish
Finishing of great depths in one go
Strong performance with high wraps
5 / 9
Tritan-Drill-Alu
Creation of core holes
Three cutting edges for the highest feed rates
Highest positioning accuracy through self-centring cross cutting edge
6 / 9
MEGA-Drill-Alu
Solid carbide drill
Drilling with lower cycle time
Focus on chip formation
Effective drilling processes with a larger number of equal diameters
7 / 9
FaceMill-Diamond-ES
Fresa plana de PCD
Desbaste y acabado de superficies frontales
Mecanizado de superficies frontales con diferentes cotas a remover con una sola herramienta
Posibilidad de operaciones de desbaste y acabado
8 / 9
OptiMill-Diamond-SPM
Fresa PCD
Operaciones de fresado circular de diversos diámetros y superficies
Reducción de los cambios de herramienta gracias al uso flexible de la herramienta
9 / 9
OptiMill-Alu-HPC-Pocket
Fresas de corte en esquina
Fresado de cavidades en materiales de aluminio
Eliminación óptima de las virutas
Estabilidad óptima
1 / 5
Fresa PCD para requisitos de mecanizado especiales
2 / 5
Fresa PCD con cuchillas dispuestas de forma alterna
Bajas fuerzas de corte en toda la profundidad de mecanizado
3 / 5
Fresa PCD con forma espiral
Acabado de estructuras de paredes finas
4 / 5
Fresas helicoidales de PCD
Recorte con gran profundidad de corte
5 / 5
Fresa plana de PCD
Fresado plano con profundidades de corte de hasta 10 mm
Creación de perfiles superficiales definidos para superficies de contacto y apoyo