01.07.2019

E-Motorengehäuse gehen prozesssicher in die Großserie

MAPAL stellt innovative Bearbeitungslösungen für Zerspanungsaufgaben bereit

Mit der Bedeutung der Elektromobilität in der Automobilindustrie steigen auch die produzierten Stückzahlen der Fahrzeuge mit elektrischem Antrieb. Zwar sind Elektromotoren per se nichts Neues, jedoch betreten Automobilhersteller mit ihrem Einbau in Fahrzeuge und der damit verbundenen Großserienfertigung Neuland. Präzisionswerkzeughersteller MAPAL stellt innovative Bearbeitungslösungen für die Zerspanungsaufgaben bereit, unter anderem für die komplexe Bearbeitung des E-Motorgehäuses.

Durch die Lagerbohrung im Statorgehäuse ist die Front des Feinbohrwerkzeugs zu sehen.
  • Durch die Lagerbohrung im Statorgehäuse ist die Front des Feinbohrwerkzeugs zu sehen.
  • Im Detail ist an einer Schneide die spezielle Spanbrechergeometrie zu sehen.
  • Ein Rendering des Feinbohrwerkzeugs als Schweißkonstruktion aus der FEM-Analyse.
  • Elf Werkzeuge sind um ein Statorgehäuse aufgestellt.
  • Drei Bearbeitungsschritte - Vor-, Semi-Finish- und Fertigbearbeitung - sind mit Werkzeug und Bauteil dargestellt.
  • Rechts das Feinbohrwerkzeug als Schweißkonstruktion in die Maschine eingespannt. Links das Statorgehäuse.
Konstruktionsvariante und Leistungsanforderung – diese beiden Stichworte geben in der Entwicklung von Elektromotoren die Richtung vor. Konstruktiv geht der Weg ganz klar in Richtung Integration: Moderne Motorenkonzepte bringen den Elektromotor, die Leistungselektronik und das Getriebe in einem zentralen Gehäuse unter. Als Antrieb für Fahrzeuge müssen Elektromotoren ihre Leistungsfähigkeit in einem großen Temperaturspektrum erhalten. Dazu spielen Gewicht, Effizienz und Wirkungsgrad eine Rolle. Und in der Automobilindustrie kommt die Anforderung nach einer hochautomatisierten und möglichst kostengünstigen Fertigung in großer Stückzahl hinzu.

Skalierbarkeit des Anforderungskatalogs

Die Automobilhersteller optimieren Verbrennungsmotoren im Hinblick auf diese Kriterien seit Jahrzehnten. Was jedoch für diese Motoren gang und gäbe ist, stellt im Hinblick auf Elektromotoren eine Herausforderung dar. Das zeigt ein Vergleich zwischen einem Gehäuse eines Elektromotors und einem Getriebegehäuse: Das Elektromotorengehäuse weist deutlich enger definierte Toleranzen auf als das Getriebegehäuse. Denn die Genauigkeit hat entscheidenden Einfluss auf den Wirkungsgrad des Motors. Die Bearbeitung erschweren überdies integrierte Kühlkanäle, die das Gehäuse dünnwandig machen, sowie in einigen Fällen Mischbearbeitungen durch eingepresste Lagerbuchsen.

In der Prototypenfertigung sind die genannten Aspekte oft noch ohne große Schwierigkeiten zu meisten. In der Großserienfertigung jedoch stellen sie eine echte Herausforderung dar. Und das nicht nur für die Einhaltung aller Toleranzen, sondern auch bezüglich der Prozesskosten. Neben der erwähnten Lagerbohrung ist die Bearbeitung der Statorbohrung besonders anspruchsvoll. Sie weist einen großen Durchmesser und eine große Tiefe auf.

Auswirkungen des Bearbeitungskonzepts auf die Werkzeugauslegung

Die dünnwandigen E-Motorengehäuse neigen aufgrund ihrer glockenähnlichen Form zu Eigenschwingungen. Aus diesem Grund und wegen gussbedingter Spannungen im Bauteil ist besonderes Augenmerk auf die Aufspannung und auf die einzelnen Bearbeitungsoperationen zu legen. Bei der Aufspannung ist auf geringe Radialkräfte zu achten, damit das spätere Bearbeitungsergebnis, insbesondere die Zylinderform, nicht negativ beeinflusst wird.

Während am Bohrungseintritt ein radiales Aufmaß von ungefähr 0,5 mm vorliegt, bildet sich am Boden der Bohrung aufgrund der gussbedingten Entformungsschräge eine größere Materialanhäufung von bis zu 13 mm im Durchmesser. Dadurch wirken hohe Bearbeitungskräfte auf das Bauteil und das Werkzeug, die in die Prozess- und Werkzeugauslegung einbezogen werden.

The front of the fine boring tool is shown through the bearing bore in the stator housing.
As a technology partner to its customers, MAPAL offers innovative machining solutions for complex machining of the electric motor housing. 

Moment of tilt: a limiting factor

It is not unusual for stator bores to measure up to 300 mm in diameter. Machining this type of bore cost-effectively therefore calls for large tool diameters and long tool projection lengths. At such proportions, both the weight of the tool and its moment of tilt have a decisive impact on the machining process and can be limited by the requirements of machine tool and tool gripper. The tools should therefore be made as lightweight as possible.

One possible means of reduce weight and moment of tilt comes in the form of special tool designs, for example with innovative, additive manufacturing methods and the resulting ultra-lightweight designs. This not only enables customisable cooling channel design, but also allows enormous amounts of weight to be saved as a result of the geometric freedom that it opens up and the option to have hollow interiors. 

Multi-machine approach recommended

Thanks to the weight savings, it is possible to devise machining approaches for smaller machine connections, such as the HSK-A63. After all, only comparably low-weight tools with large diameters can be machined on less powerful equipment. Meanwhile, to make it easier to machine large diameters on machining centres with smaller tool connections, it is possible to reduce the number of teeth on the tool and thus the machining volume or the cutting torque. However, that comes at the expense of cycle time.

These options are particularly important because most of the existing machining centres in the automotive industry are fitted with HSK-A63 connections. One way of meeting the new requirements for parts for electric vehicles is to retrofit existing machine pools accordingly. A multi-machine approach is recommended for many machining processes. With smaller spindles, it is possible to work more flexibly and up to 15% more quickly than with HSK-A100 spindles. In ideal cases, machining centres with HSK-A63 connections should be used for all-round machining; for machining stator bores, however, machines with HSK-A100 connections are preferred. In each case, the connection on the machine side has a fundamental impact on tool design. That is because the number of teeth on the tool in question is chosen on the basis of the maximum possible torque and cutting power. As a general rule, the greater the number of teeth, the shorter the cycle times and the more powerful the machine and spindle need to be.

Requirements to the machining process

Machining of the housing is ultimately subject to tight tolerances with regard to 

  • the concentricity of the bearing and stator bores, 
  • the perpendicularity of the bores to the reference surface 
  • the roundness and cylindrical form of the stator bore and bearing seat. 

In addition to the tolerances, the Al-Si alloys usually used for electric motor housings impose particular requirements on the machining process. Depending on the composition, machining these alloys can sometimes produce very long chips. However, these are undesirable for any machining process and must be avoided as they may result in wear on the part and tool as well as an increase in torque or the temperature of the part. The temperature of the chips is usually in excess of 100 degrees Celsius, and the heat needs to be extracted along with the chips. To meet this requirement reliably, MAPAL has used the finite element method (FEM) to develop special chip guiding stages and chip breaker geometries.

The special chip breaker geometry can be seen in detail on a cutting edge. 
Special chip guiding stages and chip breaker geometries ensure a process-reliable breakage and removal of the chips. 
Another challenge involved in highly accurate housing machining is that of parts becoming distorted due to differences in temperature. These are far from rare owing to the thermal expansion characteristics of aluminium. For example, when the temperature changes by 5 °C, a solid shaft with a diameter of 219 mm will expand by 0.026 mm. That may not seem very much at first glance, but it is actually quite a lot given the tolerances that need to be complied with during machining. This expansion roughly corresponds to the full diameter and shape tolerance of an electric motor housing. Fluctuations in temperature can be reduced if an emulsion cooling lubricant is applied or, in some cases, via the appropriate chip removal if minimum quantity lubrication is used. Adjusting cutting parameters and feed rates is another option.

Tool design

MAPAL has developed various designs for tools that meet the aforementioned requirements which are used on a daily basis. These include lightweight and yet stable tools in welded design that are highly suited to machining the thin walls of the housing. For the welded designs, the tool body takes the form of a tube. One of these tools weighs just half as much as a conventional boring bar. The carriers for the cutting edges and guide pads, if applicable, are welded on and support each other by means of connecting ribs. This minimises the risk of chattering. It also ensures that support is provided in the event of interrupted cuts. The bending section modulus is excellent thanks to the tubular design and the stabilising ribs. Despite long projection lengths and large diameters, the tools are highly accurate. To achieve this, the MAPAL specialists use extensive analyses based on the finite element method (FEM) to investigate coolant distribution, machining forces, torque and moment of tilt. 
A rendering of the fine boring tool as a welded design from the FEM analysis.
Numerous analyses were carried out during the development of welded designs as a fine boring tool. 
The machining process and the tools are custom-designed to suit the dimensions, machine pool and clamping setup in question. This helps to minimise the cutting forces working on the part. The process of machining the stator bore is split into three stages – pre-machining, semi-finishing and fine machining. 

Pre-machining: Vorbearbeitung: High material removal rate with economic machining values

In most cases, the machine tool is the critical factor in the design of the tool for pre-machining the stator bore. In the machining process that MAPAL recommends, the first choice is a boring tool with cartridges and PCD-tipped indexable inserts. This tool is that it achieves a high material removal rate very quickly and thus cost-effectively because it allows work at high cutting speeds and feed rates. However, using this tool requires a machine with high maximum torque and power to match. 

If such a machine is not available, the alternative is to pre-mill the stator bore. MAPAL offers an ISO helix milling cutters with PCD-tipped indexable inserts for this very purpose. Although this tool can also be used to work with very high cutting speeds and feed rates, the machining time is much longer than it is with boring on account of the longer machining stroke.

Eleven tools are arranged around a stator housing.
MAPAL covers the entire process for the complete machining of electric motor housings. 

Semi-finishing and finishing: Ensure highest precision

In designing the tool for semi-finishing, MAPAL also focuses on the torque and power of the machine. This stage of machining involves pre-machining the complex contour definition of the electric motor housing so that finishing the complete contour including chamfers and radial transitions is possible in one machining step. For this stage of machining, MAPAL recommends a precision boring tool with PCD-tipped ISO indexable inserts.

The final stage involves machining the stator bore to micron precision with a fine boring tool, also a welded design. The PCD-tipped indexable inserts are finely adjustable, which helps to maximise accuracy. The tool is fitted with guide pads to provide the best possible support in the bore.

Three machining steps (pre-machining, semi-finishing and fine machining) are shown with tool and part.
MAPAL recommends a process with three steps for machining the stator drilling – pre-machining, semi-finishing and fine machining. 

Bearing bore: Challenge of mixed machining

With some types of housings for electric motors, a steel bushing is pressed in for the bearing for the rotor shaft. The seat for the bushing is machined first and a bushing is pressed in the further course of the process. Because of the tough requirements for the concentricity of the bearing and stator bores, both bores are then fine machined with a combination tool. This involves one stage of the tool being used to machine the steel bushing and the rest to machine the stator bore out of aluminium at the same time. This is referred to as mixed machining and presents tool manufacturers with a number of challenges. Firstly, the steel chips need to be kept reliably away from the aluminium area. Otherwise, there is a considerable risk of damage to the surfaces of the component and the PCD guide pads on the tool. And secondly, the two materials differ in a fundamental way and have to be treated differently – in the choice of cutting speeds or the estimated end of the tool life.

A special chip guiding stage, the appropriate coolant supply and open chip spaces of the MAPAL machining solution ensure that the steel chips are reliably conveyed forwards. The aluminium chips, however, are routed backwards by means of a specially designed flushing mechanism. The MAPAL tool is also fitted with a protective plate that ensures that the steel chips are kept in the front area (see picture below, tool 3). 

But how to work with the differing cutting speeds and tool lives? The specialists recommend 800 m/min for machining aluminium and 200 m/min for steel. And whereas PCD-tipped cutting edges can be used to machine aluminium on 6,000 to 8,000 aluminium parts, the tool life of the cutting edges, usually Cermet, for machining steel is at 250 to 300 parts. Indexable inserts are the solution in this case. Both insert types can be replaced on-site and can be fully used to the end of the respective tool lives.

Bearbeitungsmöglichkeiten für tiefe Bohrungen mit großem Durchmesser: MAPAL Variante um 90 Prozent schneller

MAPAL empfiehlt, tiefe Bohrungen mit großem Durchmesser mittels Auf- und Feinbohren zu bearbeiten. Daneben gibt es noch ein zweites Verfahren, das für die Bearbeitung der Statorbohrung zum Einsatz kommt: das Ausspindeln. In einem Anwendungsbeispiel bearbeiten zwei Ausspindelwerkzeuge mit jeweils einer PKD-bestückten Schneide zum Schruppen und Schlichten eine Statorbohrung mit einer Länge von 200 mm, einem Rohteildurchmesser von 215,7 mm und einem Solldurchmesser von 220 mm. Die Bearbeitungszeit beträgt rund fünf Minuten.
Rechts das Feinbohrwerkzeug als Schweißkonstruktion in die Maschine eingespannt. Links das Statorgehäuse.
Mit einem Feinbohrwerkzeug als Schweißkonstruktion wird die Hauptbohrung des Zentralgehäuses auf wenige µm genau bearbeitet. 
In der MAPAL Variante mit Auf- und Feinbohren weisen die Werkzeuge acht beziehungsweise vier PKD-bestückte Schneiden auf. Die Bearbeitungszeit pro Bauteil ist signifikant kürzer: Der Prozess dauert lediglich 0,48 Minuten und ist damit deutlich wirtschaftlicher bei gleich präzisem Bearbeitungsergebnis. Die Bearbeitungsfolge mit drei Arbeitsschritten ist sehr erfolgreich in der Praxis im Einsatz. Die geforderten, sehr engen Toleranzen hinsichtlich Koaxialität, Rundheit und Zylinderform hält die MAPAL Lösung prozesssicher ein.

Kathrin Rehor, PR Project Manager bei MAPAL

Kontakt

Kathrin Rehor Public Relations Kathrin.Rehor@mapal.com Tel.: +49 7361 585 3342


Further articles from the section Industries