

Ihr Technologiepartner für die wirtschaftliche Zerspanung

TITANZERSPANUNG

Nahe beim Kunden - weltweit

Der enge Dialog mit den Kunden und damit auch das frühzeitige Erkennen von technologischen Anforderungen und Ansätzen für Innovationen sind für MAPAL wesentliche Pfeiler der Unternehmenspolitik. Demzufolge ist MAPAL in 25 Ländern mit Produktions- und Vertriebsniederlassungen direkt vertreten. So sind kurze Wege, persönliche Kontakte und langfristige Partnerschaften möglich.

Neben den maßgeblichen Produktionsstätten in Deutschland garantieren lokale Produktionseinrichtungen in strategisch wichtigen Märkten weltweit kurze Lieferzeiten. Sie sind verantwortlich für die Herstellung ausgewählter Produkte sowie für Wiederaufbereitungen, Reparaturen und Wiederholaufträge für den lokalen Markt.

Neben den eigenen Niederlassungen sind MAPAL Produkte in weiteren 19 Ländern über Vertriebsvertretungen erhältlich.

Technologieführer für die zerspanende Bearbeitung von kubischen Bauteilen.

Über
450
technische Berater im Außendienst.

Niederlassungen mit Produktion, Vertrieb und Service in

25 Länderr

Mehr als 300
Auszubildende weltweit.

Jährliche Investitionen in Forschung und Entwicklung in Höhe von

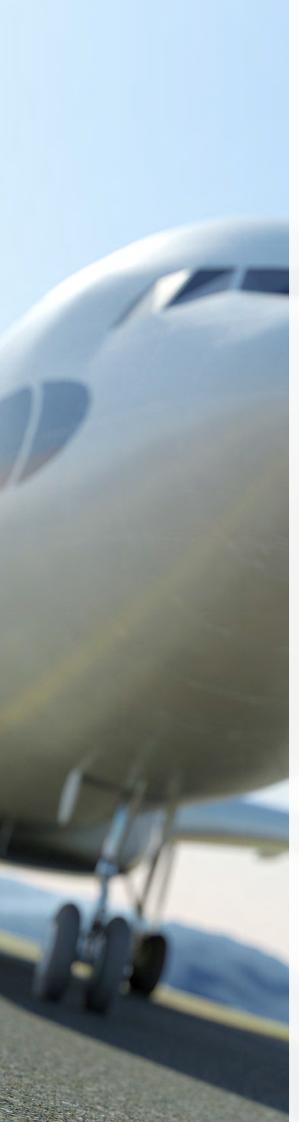
6 % des Umsatzes.

Unser größtes Gut: Mehr als

5.000
Mitarbeiter:innen weltweit.

MAPAL Branchen

- **1** Automotive
- 2 Luft- und Raumfahrt
- 3 Fluidtechnik
- **4** Energieerzeugung
- 5 Elektromobilität
- 6 Medizintechnik
- 7 Werkzeug- und Formenbau
- **B** Schiffbau
- **9** Schienenverkehr


Titanbearbeitung mit neuer Werkzeugtechnologie

In der Medizintechnik wird der Werkstoff wegen seiner Festigkeit und Verträglichkeit mit menschlichem Gewebe für Implantate verwendet. Maßgenauigkeit und hohe Oberflächengüten sind hohe Anforderungen für lange Lebensdauer bei Hüftprothesen und Titanimplantaten.

Die Automobilhersteller realisieren damit leistungsstarke Sportwagen. Die Anwendung finden sich in der Semi- und Finishbearbeitung von Chassisbauteilen. Die aus Titan gefertigten Schaufeln großer Gasturbinen nehmen enorme Kräfte auf.

Die Flugzeugindustrie stellt zunehmend mehr hoch beanspruchte Bauteile aus Titan her. MAPAL macht das Bohren und Fräsen des duktilen, hochfesten Werkstoffs produktiver und senkt damit Kosten.

INHALT

Einführung

Kompetenz Titanzerspanung	
Anwendungsgebiete	
Luft- und Raumfahrt	
Automotive	
Medizintechnik	
Sonderlösungen	
Engineering	
itanzerspanung	
Produktübersicht	
Fräsen	
Vollbohren	
Aufbohren	
Reiben und Feinbohren	
Spannen	
echnischer Anhang	
Bezeichnungsschlüssel	
Anwendungshinweise	
Handhahanashinasia	

Kompetenz Titanzerspanung

Luft- und Raumfahrt

Titan und Titanlegierungen sind prädestiniert für den Einsatz in der Luft- und Raumfahrt. Denn dort werden hohe Anforderungen an die verwendeten Werkstoffe bezüglich ihrer Festigkeit und Korrosionsbeständigkeit in Relation zum spezifischen Gewicht gestellt. Resultierend hieraus sind die Einsatzgebiete weit gefächert und reichen von kleineren mechanisch bearbeiteten Strukturbauteilen bis hin zu tragenden Teilen in Rumpf oder Schaufeln in den Triebwerken.

>> Mehr ab Seite 8

Automotive

Weniger Gewicht bedeutet weniger Kraftstoffverbrauch und damit weniger Emissionen. So finden sich viele verschiedene Ansätze für Titanwerkstoffe im Automobilbau. Angefangen von Motorenkomponenten, über Getriebebauteile und Federelemente sowie Abgasanlagen. Ziel der Automobilhersteller ist es, die Fahrzeuge leichter und damit umweltfreundlicher zu gestalten.

>> Mehr auf Seite 14

Medizintechnik

Titan ist für die Medizintechnik der nahezu perfekte Werkstoff, da er aufgrund seiner Biokompatibilität, also der Beständigkeit in einem biologischen Umfeld (antiallergisch), der geringen Wärmeleitfähigkeit und seines antimagnetischen Verhaltens umfassend Verwendung finden kann.

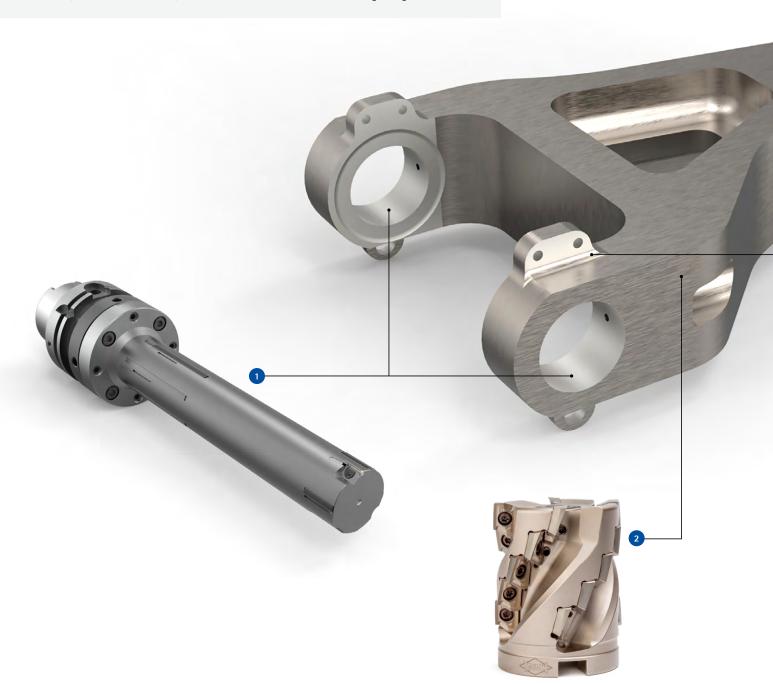
>> Mehr auf Seite 15

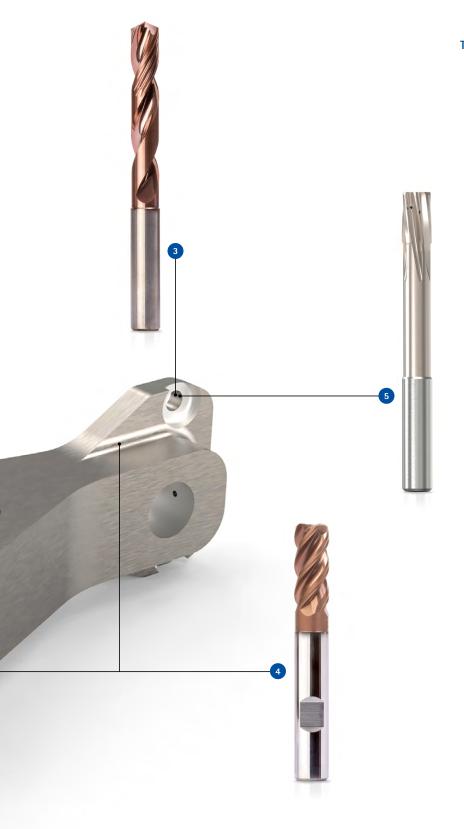
TITAN IST BESONDERS FÜR ANWENDUNGEN GEEIGNET, BEI DENEN ES AUF HOHE KORROSIONSBESTÄNDIGKEIT, FESTIGKEIT UND GERINGES GEWICHT ANKOMMT.

EIGENSCHAFTEN

- Geringe Dichte (4,5 kg/dm³)
- Hohe spezifische Festigkeit
- Hohe Temperaturfestigkeit
- Niedrige Wärmeleitfähigkeit
- Hohe Duktilität

ZERSPANBARKEIT


Die niedrige Wärmeleitfähigkeit von Titan und Titanlegierungen führt zusammen mit der hohen Zugfestigkeit der Werkstoffe dazu, dass Werkzeuge während der Zerspanung thermisch und mechanisch stark beansprucht werden und dadurch einem hohen Verschleiß unterliegen. Adhäsive Effekte zwischen Werkstoff und Werkzeug begünstigen zudem die Bildung von Aufbauschneiden. Für die Bearbeitung eignen sich deshalb besonders Werkzeuge mit großer Härte und hoher thermischer Beständigkeit.


Luft- und Raumfahrt

Torsionsgelenk

Hoch beanspruchtes Fahrwerksteil aus Titan

Das Torsionsgelenk (Torsion Link) ist ein Bestandteil des Hauptfahrwerks am Flugzeug. Der obere und untere Torsion Link sind über ein Gelenk miteinander verbunden. Diese Konstruktion ermöglicht es dem Dämpferzylinder ein- und auszufahren, ohne sich dabei zu verdrehen. Der Torsion Link stellt so die korrekte Position der Räder sicher und sorgt dadurch für einen exakten Geradeauslauf des Flugzeugs bei ausgefahrenem Fahrwerk. Da es sich um hoch beanspruchte Bauteile handelt, sind sowohl der obere, als auch der untere Torsion Link aus Titan gefertigt.

1 Feinbohrwerkzeug

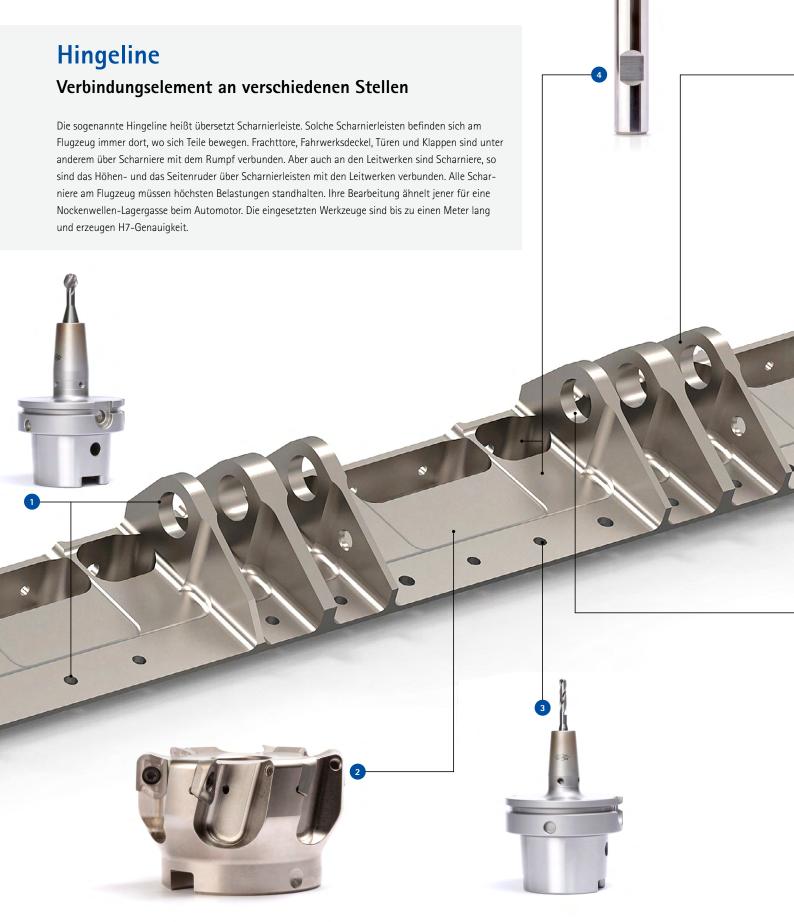
- Hochgenaue Einstellung der Schneide
- Perfekte Koaxialität der Bohrungen
- Optimale Oberflächenrauigkeit
- Perfekte Bohrungsgeometrie
- Stabile Bearbeitung durch Führungsleisten
- Hohe Wiederholgenauigkeit und einfache Werkzeugeinstellung

2 NeoMill-Titan-2-Shell

- Maximale Zerspanungsraten
- Optimale Spanabfuhr
- Hohe Laufruhe
- Variables Kühlkonzept
- Schneiden mit verschiedenen Eckenradien einsetzbar
- Verschiedene Schneidstoffe erhältlich

3 MEGA-Speed-Drill-Titan

- 140°-Spitzenwinkel
- Geringe Aufbauschneidenbildung durch eine extrem glatte Beschichtung
- Vier Führungsfasen (beste Rundheitswerte)
- Konvexe Schneide
- Innere Kühlmittelzufuhr
- Neu gestaltete Spannut (optimale Spanabfuhr)
- Effizienter Kühlmittelfluss (Vermeidung von Reibung und Hitze an der Schneide)


4 OptiMill-Titan-HPC

- Spezielle Kantenpräparation (stabile Schneide)
- Optimierte Steigung (stabiler Schnitt, ruhiger Lauf)
- Kernanstieg für mehr Stablität

5 FixReam

- Ausführung aus Vollhartmetall oder gelötet
- Bohrungsqualität: H7
- DLC-Beschichtung f
 ür beste Leistung
- Durchmesser konfigurierbar
- Ausführung für Durchgangs- oder Grundbohrungen
- Geeignet für Minimalmengenschmierung (MMS)

Luft- und Raumfahrt

1 Entgratwerkzeug aus Vollhartmetall

Mit diesem Sonderwerkzeug mit spezieller Kugelform werden die Bohrungseintritte und -austritte der Hauptbohrung sowie die Befestigungsbohrungen durch Zirkularfräsen entgratet.

2 NeoMill-Titan-2-Corner

- Hohe Zerspanungsraten
- Hohe Laufruhe
- Schneiden mit verschiedenen Eckenradien einsetzbar
- Verschiedene Schneidstoffe erhältlich

3 MEGA-Speed-Drill-Titan

- Standzeiterhöhung um 30 % im Vergleich zur bisherigen Lösung
- Bohrspezialist für hohe Schnittgeschwindigkeiten und Vorschübe
- Geringe Zykluszeit

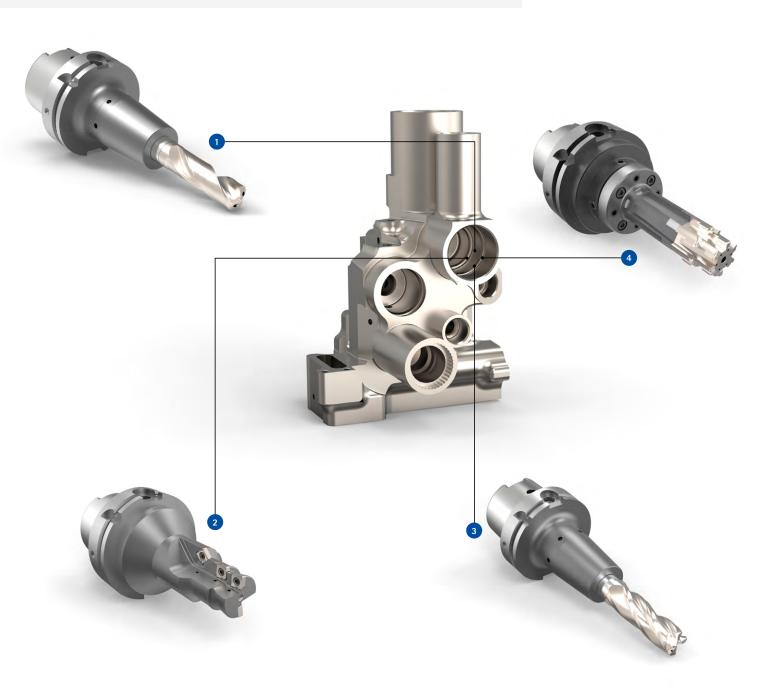
4 OptiMill-Titan-HPC

- Standzeiterhöhung um 35 %
- Perfekte Lösung zum Schruppen, für die mittlere Bearbeitung sowie zum Schlichten
- Gutes Preis-Leistungs-Verhältnis
- Passend für MillChuck, System HB
- Optimierte Steigung (stabiler Schnitt, ruhiger Lauf)
- Kernanstieg für mehr Stablität

OptiMill-Tro-Titan

- Standzeiterhöhung um 10 % im Vergleich zur bisherigen Lösung
- Hohe Abtragsraten möglich
- Ungleiche Teilung der Schneiden
- Spezielle Beschichtung zur Vermeidung von Ablagerungen
- Speziell gestaltete Spannut für optimale Spanabfuhr

6 Wechselkopfbohrer TTD, Sonderbohrer, Bohrstange


- Wechselkopfbohrer TTD zum Pilotieren der ersten Lasche
- Sonderbohrer mit zusätzlichem Führungselement am Hals zur mittleren Bearbeitung der Laschen von beiden Seiten
- Lagergeführte Bohrstange zur exakten Schlichtbearbeitung der Hauptbohrung von einer Seite

Luft- und Raumfahrt

Ventilgehäuse

Beste Oberflächen für optimalen Durchfluss

Ventilgehäuse in Flugzeugen bestehen aufgrund ihrer Betriebseigenschaften und der Gewichtsreduzierung häufig aus Titanlegierungen. Die qualitativen und technologischen Anforderungen, die an dieses Bauteil gestellt werden, sind sehr hoch und erfordern einen spezialisierten Ansatz, der eine hohe Wiederholbarkeit der Produktion und Zuverlässigkeit des Prozesses gewährleistet. Komplexe und mehrstufige Bohrungen mit Nuten oder sich kreuzenden Bohrungen können mit Sonder- oder Standardwerkzeugen effizient bearbeitet werden und erfüllen so hohe Qualitätsanforderungen.

1 Vollhartmetallbohrer

- Für schwierige Bohrbearbeitungen
- Innovativer Anschliff für gute Spanabfuhr und niedrigen Schnittdruck
- Deutlich mehr Performance und bis zu doppelter Vorschubgeschwindigkeit im Vergleich zur bisherigen Lösung

2 Aufbohrwerkzeug mit austauschbaren Schneiden

- Dreistufiges Aufbohrwerkzeug für die mittlere Bearbeitung
- Kein Einstellen der Schneiden notwendig
- Wirtschaftliches Werkzeugkonzept für die Schruppbearbeitung von Bohrungen
- Hohe Zerspanungsraten möglich
- Wendeschneidplatten mit ausgezeichneter Temperaturbeständigkeit

3 Aufbohrwerkzeug aus Vollhartmetall, vierschneidig

- Hohe Standzeit dank spezieller Beschichtung
- Beschichtung schützt vor hohen Temperaturen und übermäßigem Verschleiß der Schneiden
- Innere Kühlmittelzufuhr und Spankanalgeometrie ermöglichen eine effiziente Spanabfuhr

4 HPR-Wechselkopfreibahle, sechsschneidig

- Perfekte Koaxialität der Bohrungen
- Hoher Vorschub möglich, dadurch kürzere Bearbeitungszeit
- Einstellbarer Adapter ermöglicht präzise Werkzeugeinstellung und Beseitigung von Spindelfehlern
- Komplette Schlichtbearbeitung in einem Durchgang

5 Vollhartmetallbohrer, dreischneidig

- Spezielle dreischneidige Geometrie
- Perfekte Positionierung des Bohrers
- Bestens geeignet bei schrägem Bohrungseintritt oder bei Querbohrungen

6 Aufbohrwerkzeug aus Vollhartmetall, vierschneidig

- Spezielle Geometrie
- Stabile Bearbeitung
- Optimale Führung in der Bohrung
- Vier Schneidkanten garantieren die richtige Geometrie der Bohrung vor dem Schlichten

7 HPR-Reibahle, sechsschneidig

- Möglichkeit der Reparatur durch Entlöten/ Löten neuer Schneiden
- Perfekte Rundheit der Bohrung durch die entsprechende Schneidengeometrie die Mehrschneidigkeit
- Innenkühlung sorgt für einen effektiven Spänetransport

Automotive

Querlenker

Viele PS sicher auf die Straße gebracht

Was im Flugzeugbau gut ist, wird auch in der Produktion von Sportwagen und erst recht von Supersportwagen gerne eingesetzt: Titan an den entscheidenden Stellen. Für Querlenker, Bremssättel oder Chassisteile, die hohen Belastungen ausgesetzt sind, verwendet die Industrie hochfeste Titanlegierungen. Hier geht es oft um Passbohrungen, die Teile verbinden, wie etwa den Querlenker mit der Karosserie.

4 NeoMill-Titan-2-Shell

- Maximale Zerspanungsraten
- Optimale Spanabfuhr
- Hohe Laufruhe
- Variables Kühlkonzept
- Schneiden mit verschiedenen Eckenradien einsetzbar
- Verschiedene Schneidstoffe erhältlich

Medizintechnik

Hüftgelenk

Lange Lebensdauer für die zweite Hüfte

Maßgenauigkeit ist in der Medizintechnik elementar. Zudem spielt die Oberflächengüte der Bauteile eine entscheidende Rolle. Hüftprothesen etwa benötigen auf der einen Seite eine definierte Oberflächenrauheit, um das Einwachsen in den Knochen zu begünstigen. Auf der anderen Seite der Gelenkpfanne ist eine absolut glatte Oberfläche gefragt, um mit möglichst geringer Reibung eine lange Lebensdauer zu erreichen.

- Hitzebeständige Hochleistungsbeschichtung
- Speziell gestaltete Spannut für optimale Spanabfuhr
- Wärmereduzierung in der Schnittzone

- Standzeiterhöhung um 30 % im Vergleich zur bisherigen Lösung
- Bohrspezialist für hohe Schnittgeschwindigkeiten und Vorschübe
- Geringe Zykluszeit

Knochenplatte

Verbindungselement in Prothesen

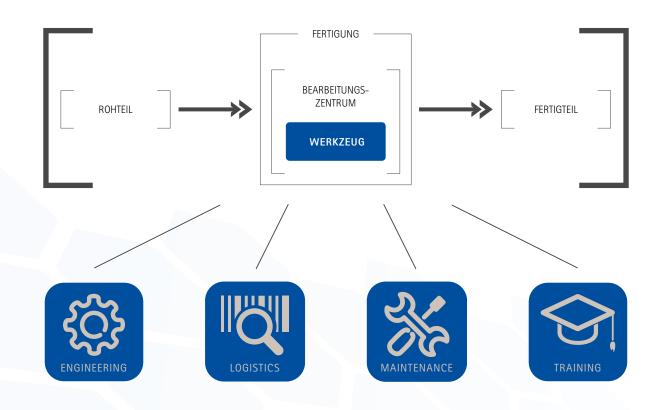
Titan findet auch für externe Prothesen Verwendung, wo der Werkstoff vor allem für die beweglichen Teile künstlicher Gliedmaße eingesetzt wird.

SONDERLÖSUNGEN

Werkzeuge zur Bearbeitung von Titanbauteilen

Anwendungsbeispiele für Sonderlösungen

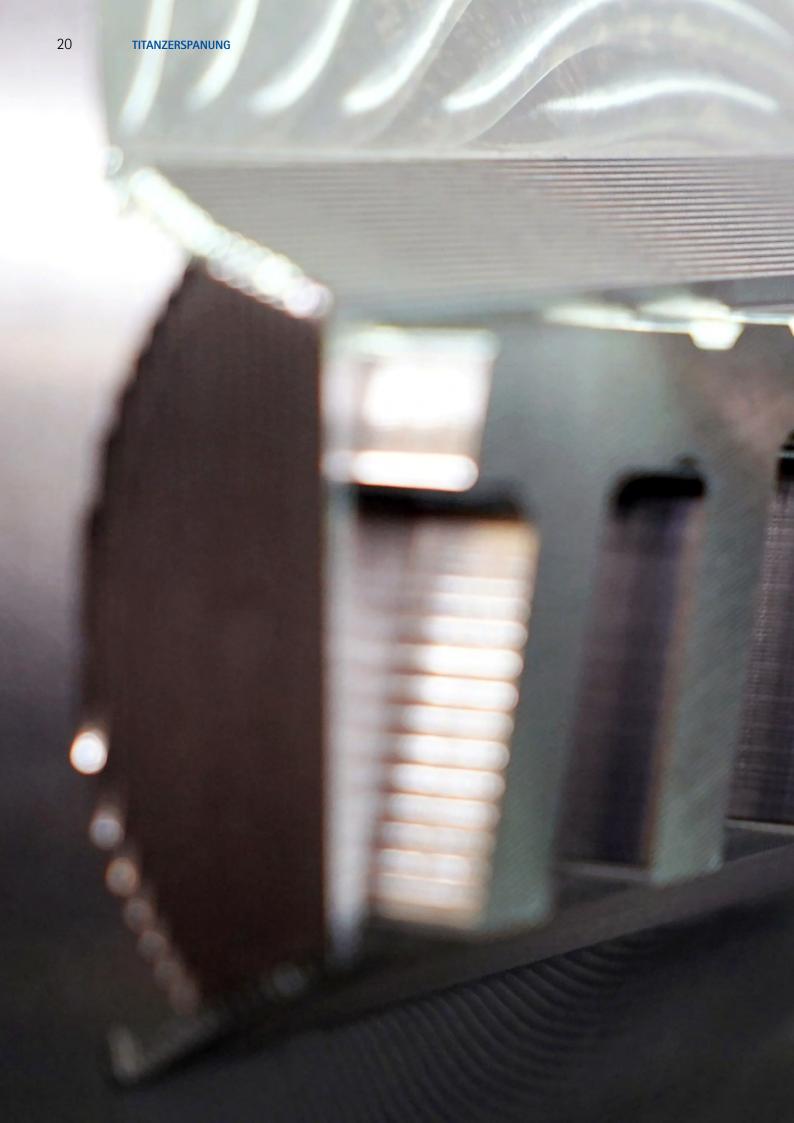
- 1 Walzenstirnfräser in monolithischer Ausführung zum Fräsen von sehr hohen Schultermaßen
- 2 Kombinationswerkzeug mit Tangentialtechnologie zum Aufbohren sowie zum beidseitigen Zirkularfräsen der Fasen am großen Auge eines Pleuels.
- 3 Feinbohrwerkzeug mit Minimalmengenschmierung (MMS), mit PKD-Führungsleisten und Modul-Flansch zum exakten Einstellen des Rundlaufes. Die justierbare Schneide stellt den µm-genauem Durchmesser am Lagersteg sicher.
- 4 Sechsschneidige Sonder-HNC-Reibahle aus Vollhartmetall für MMS-Bearbeitung mit Rückspülfunktion, zur Bearbeitung von Triebwerkshaltern.
- 5 Vollhartmetall-Formfräskopf (z=2+2) mit CFS-Trennstelle zum Entgraten, Fasen und Zirkularfräsen von Innenkonturen oder Freistichen.
- 6 Vierschneidiger Vollhartmetall-Schaftfräser mit Hals zum Bearbeiten von Bauteilen mit tiefen Taschen.



- 7 Feinbohrwerkzeug mit MMS, mit Wendeplatte und PKD-Führungsleisten zur µm-genauen Bearbeitung von Ventilbohrungen.
- 8 Mehrstufiges Aufbohrwerkzeug mit ISO-Wendeschneidplatten zur Bearbeitung von Lagerbohrungen an Gehäusebauteilen.
- 9 HPR-Wechselkopf-Reibahle mit gelöteten Schneiden zur wirtschaftlichen Konturbearbeitung von Durchmesser, Fase und Radien an einem Hydraulikgehäuse.
- 10 Zirkular-Fräswerkzeug mit Tangentialtechnologie zum Senken und Zirkularfräsen von Fasen an Bohrungen.
- 11 Beschichteter Vollhartmetallbohrer mit Innenkühlung und drei Führungsfasen zum exakten Bearbeiten von Bohrungen am Pylon.
- 12 Bohrstange mit ISO-Wendeschneidplatten zum Bearbeiten von Lagerstegen von Scharnierleisten. Diese werden eingesetzt als Verbindungselement mit dem Rumpf für Türen, Fahrwerksdeckel und Klappen bei Flugzeugen.

Individueller, bedarfsgerechter Service

Die Wurzeln von MAPAL liegen in der Herstellung von Sonderwerkzeugen. Der Fokus richtet sich daher immer auf die ganzheitliche Beratung und Betreuung bei Bearbeitungsaufgaben und Prozessen. Mit einem umfangreichen Serviceangebot unterstützt MAPAL in allen Phasen und Bereichen der Produktion. Egal, ob eine neue Fertigung aufgebaut, Prozesse optimiert, neue Technologien eingeführt, Maschinen auf neue Bauteile umgerüstet, der Werkzeugbestand optimiert oder das Know-how von Mitarbeitern erweitert werden sollen.




Mit dem Servicebaustein Engineering garantiert MAPAL eine schnelle, präzise und sichere Fertigung. Im Bereich Logistics und Maintenance können weitere Einsparpotenziale erschlossen werden. Und im Bereich Training sorgt MAPAL dafür, dass das gesammelte Spezialisten-Know-how transparent und vollständig dem Kunden zur Verfügung steht – dies ermöglicht Kunden einen entscheidenden Vorsprung zum Mitbewerber.

Bei allen Serviceangeboten von MAPAL stehen optimale Prozesse und eine umfassende Betreuung auf dem Weg in Richtung Industrie 4.0 im Mittelpunkt. Immer mit dem Ziel, maßgeblich zu einer reibungslosen, produktiven und wirtschaftlichen Fertigung beim Kunden beizutragen.

VORTEILE

- Lösungen für komplette Werkstücke inklusive Werkzeugen, Vorrichtungen, NC-Programm und Inbetriebnahme
- Gesamte Prozessauslegung und Umsetzung aus einer Hand
- Weltweit schnelle und flexible Betreuung vor Ort
- Effiziente und kostenoptimierte Werkzeugtechnologie
- Optimale Abstimmung von Werkzeug, Werkstück, Vorrichtung und Maschine
- Höchste Produktqualität, Prozesssicherheit und Wirtschaftlichkeit von Anfang an
- Schneller Durchlauf von der Planung bis zur Umsetzung bei maximaler Planungssicherheit

PRODUKTÜBERSICHT

Werkzeuge für die Titanbearbeitung

Das leistungsfähige Produktprogramm von MAPAL sichert bei allen Bearbeitungsaufgaben in Titan hervorragende und prozesssichere Ergebnisse. Wirtschaftlichkeit und Produktqualität stehen bei der Erfüllung der Kundenanforderungen besonders im Fokus.

Effizienz in der Titanbearbeitung

Kern der Werkzeugauslegung sind eine durchdachte Wärmeabfuhr und hitzebeständige Schneidstoffe. Dadurch können vergleichsweise hohe Schnittwerte prozesssicher realisiert werden. Die Bearbeitung des duktilen, hochfesten Werkstoffs wird produktiver und die Kosten werden gesenkt.

Anwendungsorientiert

Das Portfolio umfasst Bohrer und Fräser aus Vollhartmetall, Fräser mit Wendeschneidplatten, Reibahlen für die Bohrungsfeinbearbeitung sowie Wendeschneidplatten zum Aufbohren. In Verbindung mit anwendungsorientierter Spanntechnik bietet MAPAL von der Spindel bis zur Schneide alles aus einer Hand und sichert so die maximale Leistungsfähigkeit des Gesamtsystems.

Breites Spektrum an verfügbaren Durchmessern

Das Spektrum an verfügbaren Durchmessern ist breit angelegt. Angefangen bei kleinen Größen ab 3 mm, wie sie oft in der Medizintechnik verlangt werden, bis hin zu den großen Werkzeugen für den Flugzeugbau und die Energietechnik.

Fräsen

Fräsen mit auswechselbaren Schneiden

NeoMill-Titan-2-Corner

- Eckfräser mit zweischneidigen Radial-Wendeschneidnlatten
- Positive Grundform fur schwingungsanfällige Bauteile
- Schnitttiefen von bis zu 10 mm

NeoMill-Titan-2-Shell

- Walzenstirnfräser mit zweischneidigen Radial-Wendeschneidplatten
- Ideal für tiefes Eckfräsen und zum Besäumen mit hohen Schnitttiefen von bis zu 75 mm

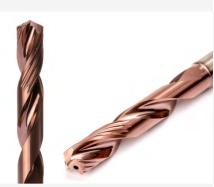
NeoMill-4-HiFeed90

- Hochvorschubfräser mit vierschneidigen Radial-Wende-
- Universelles Werkzeugsystem für höchste Produktivität

ø-Bereich: 16,00 - 200,00 mm

Fräsen mit festen Schneiden

OptiMill-Titan-HPC


- Vierschneidiger Eckfräser zum Schruppen und Schlichten von Titan
- Spezielle Schneidkantenpräparation für höchste Verschleißbeständigkeit
- Höchste Werkzeugstabilität durch maximalen Kerndurchmesser und Kernanstieg zum Schaft
- Verschiedene Eckenradien verfügbar

OptiMill-Tro-Titan

- Fünfschneidiger Trochoidfräser
- Maximales Zeitspanvolumen bei gleichzeitig hoher Oberflächengüte
- Ungleichteilung für Laufruhe während der Bearbeitung
- Feingewuchteter Schneidteil für eine Schonung der Maschinenspindel und längere Standzeiten
- Maschinenspindel und lär

 Schnitttiefen his zu 3xD
- ø-Bereich: 6,00 25,00 mm

Vollbohren

Vollbohren mit Vollhartmetall

MEGA-Speed-Drill-Titan

- Zweischneidiger Hochgeschwindigkeitsbohrer
- Vier Führungsfasen für exakte Oberflächengenauigkeit und Zylindrizität
- Konvexe Schneidkante mit Eckenfase für höchste Stabilität
- Neuartiges Kordelprofil zum Schutz der Führungsfasen
- Maximale Hitze- und Verschleißbeständigkeit

ø-Bereich: 3,00 - 20,00 mm

Seite 55

Seite 25

Aufbohren

Aufbohren mit Tangentialtechnologie

Bauteilspezifische Sonderwerkzeuge

- Ein- oder mehrstufige Werkzeuge mit Wendeschneidplatten
- Tangentialtechnologie für hohe Leistungsfähigkeit
- Definierte Spanformstufen
- Höchste Produktivität
- Stabile Bearbeitungskonzepte

Tangential-Wendeschneidplatten

- Geschliffene Platten CTHQ und FTHQ
- Vier nutzbare Schneidkanten
- Breites Anwendungsspektrum durch drei verschiedene Größen
- Leistungsstarke PVD-Beschichtung für maximale Hitze- und Verschleißbeständigkeit
- Spezieller Bogenschliff für beste Bearbeitungsergebnisse bei Längen-Durchmesser-Verhältnis
 > 3,5xD

Reiben und Feinbohren

Bohrungsfeinbearbeitung

FixReam FXR

- Hochleistungsreibahle aus Vollhartmetall
- Ideal zur Realisierung kurzer Taktzeiten
- Unterschiedliche Schneidstoffe und Beschichtungen verfügbar

Wechselkopfreibahle HPR

- Hochgenaues Wechselkopfsystem in fester Ausführung mit gelöteten Schneiden
- Exakte Rundlauf– und Wechselgenauigkeit von $< 3 \ \mu m$
- Höchstmaß an Wirtschaftlichkeit durch modulares System
- Für Minimalmengenschmierung (MMS) geeignet

ø-Bereich: 2,80 - 65,00 mm

Spannen

Hydrodehnspanntechnik und mechanische Werkzeugspanntechnik

Hydrodehn spanntechnik

- UNIQ Mill Chuck, HA für hochdynamische Fräsanwendungen
- UNIQ DReaM Chuck f
 ür Reib- und Bohranwendungen sowie zum Schlichten bei Fr
 äsoperationen
- HydroChuck mit umfangreichem Standardprogramm

Mechanische Werkzeugspanntechnik

- Flächenspannfutter MillChuck, HB
- MFS-Fräskopfhalter für Einschraubfräser
- HFS-Wechselkopfhalter für HPR-Wechselkopfreibahlen

Aufsteckfräserdorne

- Mit vergrößertem Anlagedurchmesser

Adapter

- Ausrichtadapter Modul zur hochpräzisen Ausrichtung aller Flanschmodule

Seite 61 Seite 65 Seite 79

FRÄSEN

Fräser mit auswechselbaren Schneiden

NeoMill-Titan-2-Corner	
NeoMill-Titan-2-Shell	
Radial-Wendeschneidplatte XPKT, zweischneidig	
NeoMill-4-HiFeed90	
Radial-Wendeschneidplatte SDGT SDMT, vierschneidig	
Schnittwertempfehlung	
Schneidstoffübersicht	
Ersatzteile und Zubehör	
Fräser mit festen Schneiden	
OptiMill-HPC-Titan	
OptiMill-Tro-Titan	
Schnittwertempfehlung	
Technischer Anhang	
Bezeichnungsschlüssel	
Anwendungshinweise	

NeoMill®-Titan-2-Corner

Wendeschneidplattenfräser mit Biss

NeoMill-Titan ist der Überbegriff für eine Fräserfamilie mit Wendeschneidplatten für die Titanbearbeitung: Aufsteck-, Schaft- und Eckfräser zählen zum Standardportfolio. Mit ideal angepassten Schneidplattengeometrien und Spannuten werden die Späne effektiv aus der Scherzone befördert. Die Ungleichteilung der Schneiden am Werkzeugumfang sorgt für eine hohe Laufruhe.

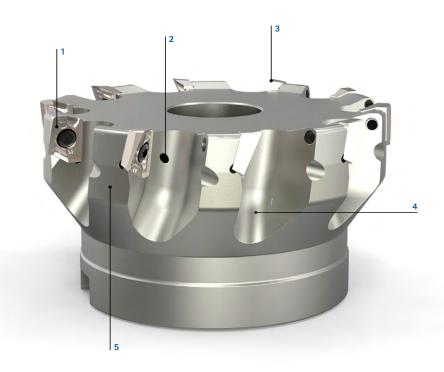
1 Wendeschneidplatten

 XPKT-Wendeschneidplatte mit vier verschiedenen Eckenradien und drei Schneidstoffsorten

2 Kühlmittelaustritte

 Variabel gestaltete Kühlmitteaustritte ermöglichen die Regulierung der Durchflussmenge für jede einzelne Schneide (Walzenstirnfräser)

3 Positive Schneidengeometrie

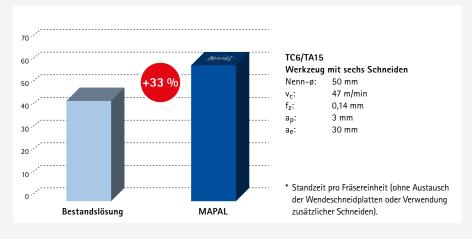

 Die positive Schneidengeometrie sorgt für ein weiches Schnittverhalten, wodurch die thermische Belastung der Schneidkante minimiert wird

4 Spannut

 Die ideal angepassten Spannuten befördern die Späne effektiv aus der Scherzone

5 Ungleichteilung

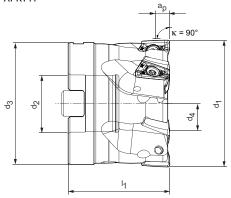
 Die Ungleichteilung der Schneiden sorgt für eine hohe Laufruhe



Merkmale

Baumaße:

- Eckfräser als Aufsteckfräser
- ø-Bereich: 40 mm bis 100 mm
- Standardmäßige Eckenradien der Wendeschneidplatten: 0,8 / 2 / 3 und 4 mm
- Zweischneidige Wendeschneidplatte
- a_p max. 10 mm
- Erhöhte Lebensdauer der Werkzeuge
- Perfekte Lösung für die Schruppbearbeitung und mittlere Bearbeitung


Standzeit [min] *

NeoMill®-Titan-2-Corner

Eckfräser mit Radialtechnologie

XPKT11

Aufsteckfräser, mittlere Teilung

	Baumaße						Gewicht [kg]	max. Be- triebsdrehzahl	Innen- kühluna	Spezifikation	Bestell-Nr.
d ₁	d ₂	d_3	d ₄	l ₁		max. *	[9]	[min ⁻¹]	g		
40	16	38	13,8	40	4	10	0,2	21.000	~	ICM901-040-CA16-Z04R-XP_T11	31281086
50	22	48	18,5	40	4	10	0,3	20.000	~	ICM901-050-CA22-Z04R-XP_T11	31281088
63	27	58	20,5	50	5	10	0,7	18.000	~	ICM901-063-CA27-Z05R-XP_T11	31281110
80	32	78	27	55	7	10	1,5	16.000	~	ICM901-080-CA32-Z07R-XP_T11	31281112
100	32	78	27	55	9	10	2,0	14.000	~	ICM901-100-CA32-Z09R-XP_T11	31281114

Aufsteckfräser, enge Teilung

	Baumaße						Gewicht [kg]	max. Be- triebsdrehzahl	Innen- kühlung	Spezifikation	Bestell-Nr.
d ₁	d_2	d_3	d_4	I ₁		max. *	[9]	[min ⁻¹]			
40	16	38	13,8	40	5	10	0,2	21.000	•	ICM901-040-CA16-Z05R-XP_T11	31281087
50	22	48	18,5	40	6	10	0,3	20.000	~	ICM901-050-CA22-Z06R-XP_T11	31281089
63	27	58	20,5	50	7	10	0,7	18.000	~	ICM901-063-CA27-Z07R-XP_T11	31281111
80	32	78	27	55	9	10	1,5	16.000	~	ICM901-080-CA32-Z09R-XP_T11	31281113
100	32	78	27	55	11	10	2,0	14.000	~	ICM901-100-CA32-Z11R-XP_T11	31281115

Zubehör

XPKT1104	Wendeschneidplatte (WSP)	Seite 31
MCA	Aufsteckfräserdorn	Seite 96

Ersatzteile**

Spannschraube für WSP TORX PLUS	Bestell-Nr.
M3.5X8.1-TX10-IP	30979520
Fräseranzugsschrauben für Aufsteckfräser	Seite 48

Maßangaben in mm.

- Maximale Betriebsdrehzahlen beziehen sich nur auf das Schneidensystem.

 * Beim Eckfräsen sollte die Schnitttiefe vorzugsweise größer oder kleiner als der Eckenradius der Schneidplatte gewählt werden.
- ** Im Lieferumfang enthalten.

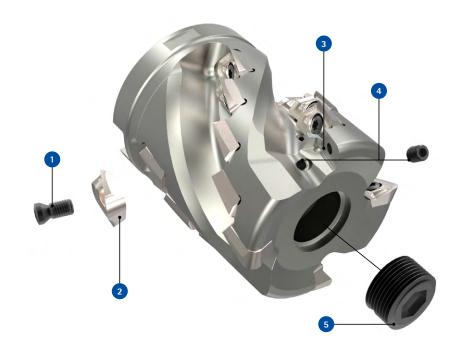
NeoMill®-Titan-2-Shell

Walzenstirnfräser mit individueller Kühlmittelzufuhr

Die NeoMill-Walzenstirnfräser sind als als Aufsteck- und Schaftvariante verfügbar. Aufgrund der Topographie der Wendeschneidplatte werden die Späne optimal geformt und über die ideal angepassten Spannuten aus der Scherzone befördert. Variabel gestaltete Kühlmittelaustritte ermöhlichen die Regulierung der Durchflussmenge für jede einzelne Schneide.

1 Spannschraube für Wendeschneidplatte (TORX PLUS)

2 Wendeschneidplatten

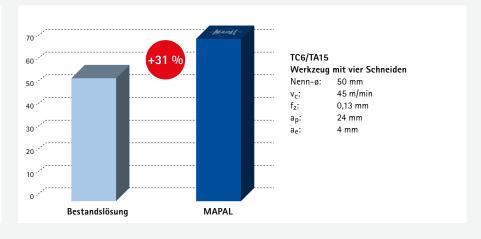

 XPKT-Wendeschneidplatte mit vier verschiedenen Eckenradien und drei Schneidstoffsorten

3 Wendeschneidplattensitz

4 Gewindestift mit Kühlmittelaustritt

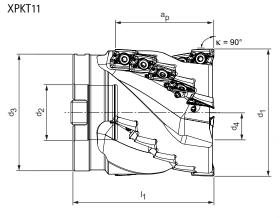
- Effizientes und variables Kühlkonzept erhöht die Werkzeugstandzeit
- Individuelles Einstellen und Verschließen der Auslassquerschnitte möglich
- Einfache Regulierung der Kühlmittelzufuhr an jeder Schneide, wodurch eine optimale Wärmeableitung an der Schneide gewährleistet wird

5 Kühlmittelverschlussschraube



Merkmale

Baumaße:


- ø-Bereich: 32 mm bis 80 mm
- Standardmäßige Eckenradien der Wendeschneidplatten: 0,8 mm / 2 mm / 3 mm und 4 mm
- Verbesserte Spanabfuhr
- Optimale Wärmeableitung in der Schneidzone
- Erhöhte Lebensdauer der Werkzeuge
- Perfekte Lösung für die Schruppbearbeitung und mittlere Bearbeitung

Standzeit [min]

NeoMill®-Titan-2-Shell

Walzenstirnfräser mit Radialtechnologie

Aufsteckfräser, mittlere Teilung

Baumaße				Z _{eff}	WSP- Anzahl	a _p max. *	Gewicht [kg]	max. Be- triebsdrehzahl	Innen- kühlung	Spezifikation	Bestell-Nr.	
d ₁	d_2	d_3	d ₄	I ₁		711120111	1110711	[9]	[min ⁻¹]	g		
50	22	48	16,5	65	4	20	47,5	0,6	20.000	~	ISM901-050-CA22-Z04R-XP_T11	31281119
63	27	58	20,5	70	4	20	47,5	1,0	18.000	~	ISM901-063-CA27-Z04R-XP_T11	31281121
80	32	78	25	85	5	30	57	2,2	16.000	✓	ISM901-080-CA32-Z05R-XP_T11	31281123

Aufsteckfräser, enge Teilung

	Baumaße				Z _{eff}	WSP- Anzahl	a _p max. *	Gewicht [kg]	max. Be- triebsdrehzahl	Innen- kühluna	Spezifikation	Bestell-Nr.
d ₁	d ₂	d_3	d ₄	l ₁		71124111	111071	[9]	[min ⁻¹]	g		
40	16	38	14,5	60	3	12	38	0,3	21.000	~	ISM901-040-CA16-Z03R-XP_T11	31281118
50	22	48	16,5	65	5	25	47,5	0,5	20.000	✓	ISM901-050-CA22-Z05R-XP_T11	31281120
63	27	58	20,5	70	5	25	47,5	1,1	18.000	v	ISM901-063-CA27-Z05R-XP_T11	31281122
80	32	78	25	85	6	36	57	2,3	16.000	V	ISM901-080-CA32-Z06R-XP_T11	31281124

Zubehör

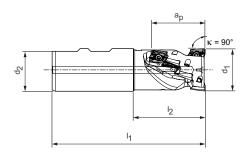
Q	XPKT1104	Wendeschneidplatte (WSP)	Seite 31
	MCA	Aufsteckfräserdorn	Seite 96
***		Gewindestift	Bestell-Nr.
		Mit Kühlmittelbohrung Innen-ø = 1 mm Innen-ø = 0,5 mm	31291814 31291816
		Ohne Kühlmittelbohrung	10003420

Ersatzteile**

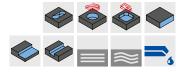
	Spannschraube für WSP TORX PLUS	Bestell-Nr.
	M3.5X8.1-TX10-IP	30979520
		Bestell-Nr.
	Gewindestift mit	
	Kühlmittelbohrung	
	Innen- $\emptyset = 1,5 \text{ mm}$	31291811
C) man	Fräseranzugsschrauben für Aufsteckfräser	Seite 48
	Kühlmittelverschluss- schraube	Seite 48

Maßangaben in mm.

Maximale Betriebsdrehzahlen beziehen sich nur auf das Schneidensystem.


- * Beim Eckfräsen sollte die Schnitttiefe vorzugsweise größer oder kleiner als der Eckenradius der Schneidplatte gewählt werden.
- ** Im Lieferumfang enthalten.

Abhängig vom eingesetzten Spannmittel sind abweichende maximale Betriebsdrehzahlen zu beachten.


^{***} Zusätzliche Kühlmitteldüsen zur Reduzierung des Querschnittes des Kühlmittelaustrittes, wodurch eine Erhöhung des Kühlmitteldruckes erzielt werden kann (bei nicht ausreichendem Kühlmitteldruck der Werkzeugmaschine).

NeoMill®-Titan-2-Shell

Walzenstirnfräser mit Radialtechnologie XPKT11

Schaftfräser

	Baumaße			Z _{eff}	WSP- Anzahl	a _p max. *	Gewicht [kg]	max. Be- triebsdrehzahl	Schaft- form	Innen- kühlung	Spezifikation	Bestell-Nr.
d_1	d_2	I ₁	l ₂				. 51	[min ⁻¹]				
32	32	115	53	2	8	38	0,6	23.000	НВ	~	ISM901-032-115-HB32-Z2R-XP_T11	31281125
40	32	120	58	3	15	47,5	0,7	21.000	НВ	~	ISM901-040-120-HB32-Z3R-XP_T11	31281126

Zubehör

Ö	XPKT1104	Wendeschneidplatte (WSP)	Seite 31
	MWC	MillChuck, HB	Seite 94

Ersatzteile**

Spannschraube für WSP TORX PLUS	Bestell-Nr.
M3.5X8.1-TX10-IP	30979520

Maßangaben in mm.

Maximale Betriebsdrehzahlen beziehen sich nur auf das Schneidensystem.

- Beim Eckfräsen sollte die Schnitttiefe vorzugsweise größer oder kleiner als der Eckenradius der Schneidplatte gewählt werden.
- ** Im Lieferumfang enthalten.

XPKT

Radial-Wendeschneidplatte, zweischneidig

Werkstoff		Ni-Legierung verschleißfest		Ti-Legierung zäh		
Substrat			Hartmetall			
Beschichtung			PVD			
Schneidstoffsorte		HP990 HP993 HP995				
Schneidkantenausführung		M33 M33 M33				
XPKT11	a _p max. [mm]					
XPKT110408R	*	31103767	31329348	31103766		
XPKT110420R	*	31160787	31160786			
XPKT110430R	*	31160789 31343444 31160788				
XPKT110440R	*	31160801 31343445 31160800				

Abmessungen [mm]										
R S										
I	d	S	d ₁	R						
13,98	9,35	4,7	4,1	8,0						
13,98	9,35	4,7	4,1	2,0						
13,98	9,35	4,7	4,1	3,0						
13,98	9,35	4,7	4,1	4,0						

Vorschub pro Zahn

- - -	Schneidkaten-	XPKT
MZG**	ausführung	f _z [mm/Zahn]
S	M33	0,1 - 0,25

Legende: M33 = Mittlere Bearbeitung

Bestückungshinweis

Bestückung Walzenstirnfräser NeoMill-Titan-2-Shell mit XPKT-Wendeschneidplatten

In der vordersten Schneidenreihe können verschiedene WSP-Eckenradien eingesetzt werden. 0,8 mm / 2,0 mm / 3,0 mm / 4,0 mm

In den hinteren Schneidenreihen (ab der 2. Reihe) dürfen **nur** WSP mit einem Eckenradius kleiner oder gleich **0,8 mm** eingesetzt werden

^{**} ap max. ist abhängig von Fräsertyp und Einsatzfall.

^{**} MAPAL Zerspanungsgruppen

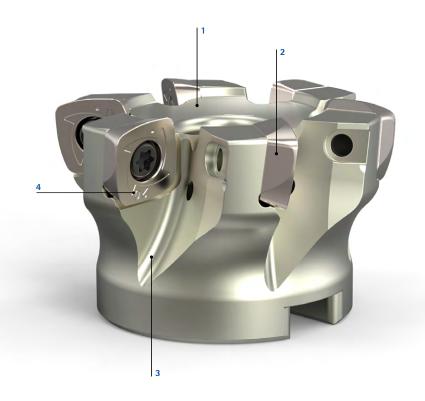
Hohe Zerspanungsraten bei hoher Prozesssicherheit

Der Hochvorschubfräser NeoMill-4-HiFeed90 ist ein universelles Werkzeugsystem für höchste Produktivität und zeichnet sich durch höchste Abtragsraten, extreme Vorschübe und große Spantiefen aus. Erhältlich als Aufsteck-, Schaft- und Einschraubfräser.

1 Universelles Werkzeugsystem

- Ungleichteilung sorgt für hohe Stabilität und Laufruhe
- Höchste Produktivität
- Höchste Abtragsraten durch extreme Vorschübe und große Spantiefen

2 Wendeplatten

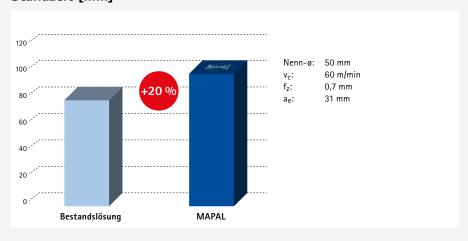

- Vier Wendeplattengrößen
- Vierschneidige Wendeschneidplatte

3 Nutgeometrie

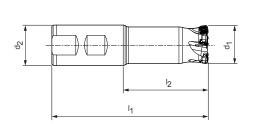
- Effektiver Spänetransport aus der Scherzone

4 Schneidstoff

 Zwei verschiedene Schneidstoffsorten mit PVD-Beschichtung



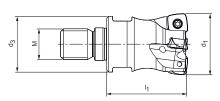
Merkmale

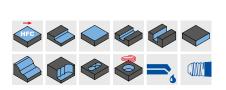

Baumaße:

- Schaftfräser, Einschraubfräser, Aufsteckfräser
- ø-Bereich: 16 mm bis 200 mm
- Vierschneidige Wendeschneidplatte
- ap max. 1 mm bis 3,5 mm
- z_{eff} zwei bis elf Schneiden
- SD-Plattengröße von 06, 10, 14 und 18
- Leichter Schnitt auch im Vollnutfräsen

Standzeit [min]

Hochvorschubfräser SDMT06





Schaftfräser

	Baur	naße		Z _{eff}	a _p max.	. Gewicht Innen- Spezifikation —— [kg] kühlung		Bestell-Nr.	
d ₁	d ₂	I ₁	l ₂		HFC	[kg]	Kumung		
16	16	85	37	2	1	0,10	V	IMH901-016-085-HB16-Z2R-SD06	31146632
20	20	90	40	3	1	0,17	V	IMH901-020-090-HB20-Z3R-SD06	31146633
25	25	106	50	4	1	0,33	V	IMH901-025-106-HB25-Z4R-SD06	31146634
32	32	124	64	5	1	0,66	·	IMH901-032-124-HB32-Z5R-SD06	31146635
35	32	124	64	5	1	0,67	~	IMH901-035-124-HB32-Z5R-SD06	31146636

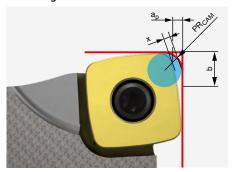
Einschraubfräser

	Baumaße			Z _{eff}	a _p max.	SW	Gewicht [kg]	Innen- kühlung	Spezifikation	Bestell-Nr.
d ₁	М	d_3	I ₁		HFC		[N9]	Kumung		
16	8	13,8	31	2	1	12	0,03	✓	IMH901-016-M008-Z02R-SD06	31146646
20	10	18	29,8	3	1	16	0,05	V	IMH901-020-M010-Z03R-SD06	31146647
25	12	21	32	4	1	18	0,09	V	IMH901-025-M012-Z04R-SD06	31146648
32	16	29	43	5	1	24	0,21	V	IMH901-032-M016-Z05R-SD06	31146649
35	16	29	43	5	1	24	0,23	·	IMH901-035-M016-Z05R-SD06	31146650

Zubehör

SDMT0602	Wendeschneidplatte (WSP) HFC	Seite 38
MWC	MillChuck, HB	Seite 94
MFS-101	MFS-Fräskopfhalter für Einschraubfräser	Seite 99

Ersatzteile*


CDMTocoo	Spannschraube für WSP	Bestell-Nr.
SDMT0602	M2.2X5.2-TX7-IP	31161853

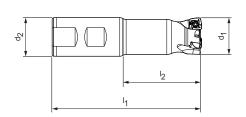
SI SI	SDMT0602	Spannschraube für WSP	Bestell-Nr.	
	3DIVI10002	M2.2X5.2-TX7-IP	31161853	

Maßangaben in mm.

Maximale Betriebsdrehzahlen beziehen sich nur auf das Schneidensystem.

CAM Programmierhinweis

Beim Einsatz einer HFC-Wendeschneidplatte ist der Programmierradius PR_{CAM} zu beachten.

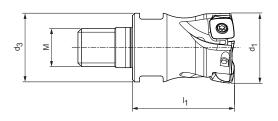

SDMT06

	Abmessungen [mm]								
PR _{CAM} a _p x b									
1,77	1,0	0,45	5,12						

Abhängig vom eingesetzten Spannmittel sind abweichende maximale Betriebsdrehzahlen zu beachten.

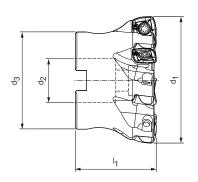
^{*} Im Lieferumfang enthalten.

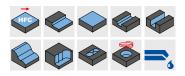
Hochvorschubfräser SD__10



Schaftfräser

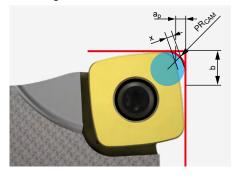
	Baur	naße		Z _{eff}	a _p max.	Gewicht [kg]	Innen- kühlung	Spezifikation	Bestell-Nr.
d ₁	d_2	I ₁	l ₂		HFC	[/9]	Kumung		
25	25	106	50	2	1,5	0,31	~	IMH901-025-106-HB25-Z2R-SD10	31144156
25	25	106	50	3	1,5	0,30	· ·	IMH901-025-106-HB25-Z3R-SD10	31144157
32	32	124	64	3	1,5	0,64	·	IMH901-032-124-HB32-Z3R-SD10	31144158





Einschraubfräser

	Baur	naße		z _{eff}	a _p max.	SW	Gewicht [kg]	Innen- kühlung	Spezifikation	Bestell-Nr.
d ₁	M	d_3	I ₁		HFC		[kg]	Kumung		
25	12	21	32	2	1,5	18	0,08	~	IMH901-025-M012-Z02R-SD10	31144200
25	12	21	32	3	1,5	18	0,07	V	IMH901-025-M012-Z03R-SD10	31144201
32	16	29	42	3	1,5	24	0,20	V	IMH901-032-M016-Z03R-SD10	31144206
32	16	29	43	4	1,5	24	0,17	·	IMH901-032-M016-Z04R-SD10	31144202
40	16	29	43	4	1,5	24	0,21	· ·	IMH901-040-M016-Z04R-SD10	31144203


Aufsteckfräser

	Baumaße			z _{eff}	a _p max.	Gewicht [kg]		Spezifikation	Bestell-Nr.
d ₁	d_2	d_3	I ₁		HFC	[/9]	Kumung		
40	16	35	40	4	1,5	0,17	~	IMH901-040-CA16-Z04R-SD10	31144056
40	16	35	40	6	1,5	0,17	~	IMH901-040-CA16-Z06R-SD10	31144057
50	22	43	40	5	1,5	0,26	~	IMH901-050-CA22-Z05R-SD10	31144059
50	22	43	40	7	1,5	0,25	~	IMH901-050-CA22-Z07R-SD10	31144060
52	22	43	40	5	1,5	0,30	~	IMH901-052-CA22-Z05R-SD10	31144061
63	22	48	40	6	1,5	0,42	~	IMH901-063-CA22-Z06R-SD10	31144062
63	22	48	40	8	1,5	0,42	~	IMH901-063-CA22-Z08R-SD10	31144063
66	22	48	40	5	1,5	0,46	~	IMH901-066-CA22-Z05R-SD10	31144085
80	27	60	50	8	1,5	0,91	~	IMH901-080-CA27-Z08R-SD10	31144064

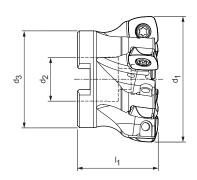
Zubehör

	SD1004	Wendeschneidplatte (WSP) HFC	Seite 38
C) Minne		Fräseranzugsschrauben für Aufsteckfräser	Seite 48
	MCA	Aufsteckfräserdorn	Seite 96
	MWC	MillChuck, HB	Seite 94
	MFS-101	MFS-Fräskopfhalter für Einschraubfräser	Seite 99

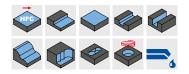
CAM Programmierhinweis

Beim Einsatz einer HFC-Wendeschneidplatte ist der Programmierradius PR_{CAM} zu beachten.

SD__10


Abmessungen [mm]						
PR _{CAM} a _p x b						
2,25 1,5 0,62 8,033						

Ersatzteile*

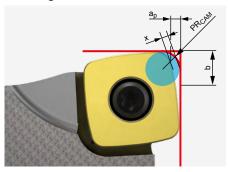

	SD1004	Spannschraube für WSP M3X8.3-TX9-IP	Bestell-Nr.
			31161852

 $^{^{\}star}$ Im Lieferumfang enthalten.

Hochvorschubfräser SDMT14

Aufsteckfräser

	Baumaße			Z _{eff}	a _p max.	Gewicht [kg]	Innen- kühlung	Spezifikation	Bestell-Nr.
d ₁	d_2	d_3	I ₁		HFC	נאפו	Kumung		
50	22	43	40	5	2,4	0,22	~	IMH901-050-CA22-Z05R-SD14	31144065
52	22	43	40	5	2,4	0,28	✓	IMH901-052-CA22-Z05R-SD14	31144067
63	22	48	40	6	2,4	0,38	✓	IMH901-063-CA22-Z06R-SD14	31144068
66	22	48	40	6	2,5	0,43	✓	IMH901-066-CA22-Z06R-SD14	31144069
80	27	60	50	7	2,4	0,85	~	IMH901-080-CA27-Z07R-SD14	31144070
100	32	78	50	7	2,4	1,49	✓	IMH901-100-CA32-Z07R-SD14	31144071
100	32	78	50	9	2,4	1,49	✓	IMH901-100-CA32-Z09R-SD14	31144072
125	40	90	60	11	2,4	2,79	✓	IMH901-125-CA40-Z11R-SD14	31144073


Zubehör

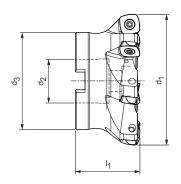
	SDMT1405	Wendeschneidplatte (WSP) HFC	Seite 38
	MCA	Aufsteckfräserdorn	Seite 96
C) man		Fräseranzugsschrauben für Aufsteckfräser	Seite 48

Ersatzteile*

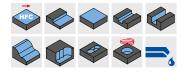
	SDMT1405	Spannschraube für WSP M5X10.8-TX20-IP	Bestell-Nr.
8	3DIVIT 1405		31161851

CAM Programmierhinweis

Beim Einsatz einer HFC-Wendeschneidplatte ist der Programmierradius PR_{CAM} zu beachten.


SDMT14

Abmessungen [mm]						
PR _{CAM}	a _p	Х	b			
3,45	2,4	0,93	10,868			

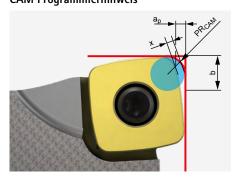

^{*} Im Lieferumfang enthalten.

NeoMill®-4-HiFeed90

Hochvorschubfräser SDMT18

Aufsteckfräser

	Baur	maße		Z _{eff}	a _p max.	Gewicht [kg]	Innen- kühlung	Spezifikation	Bestell-Nr.
d ₁	d_2	d_3	I ₁		HFC	[/9]	Kumung		
80	27	60	50	5	3,5	0,79	~	IMH901-080-CA27-Z05R-SD18	31144075
100	32	78	50	6	3,5	1,49	✓	IMH901-100-CA32-Z06R-SD18	31144087
125	40	90	60	7	3,5	2,43	~	IMH901-125-CA40-Z07R-SD18	31144088
160	40	115	60	9	3,5	4,09	-	IMH900-160-CA40-Z09R-SD18	31144089
200	60	140	65	11	3,5	5,83	-	IMH900-200-CA60-Z11R-SD18	31144090


Zubehör

	SDMT1806	Wendeschneidplatte (WSP) HFC	Seite 38
	MCA	Aufsteckfräserdorn	Seite 96
C) man		Fräseranzugsschrauben für Aufsteckfräser	Seite 48

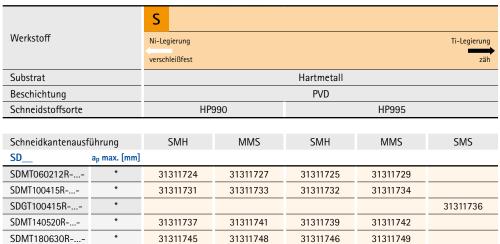
Ersatzteile*

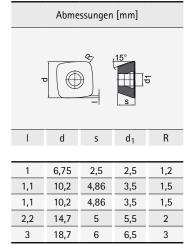
SDMT1806	Spannschraube für WSP	Bestell-Nr.
2010111006	M6X15-T25	31161862

CAM Programmierhinweis

Beim Einsatz einer HFC-Wendeschneidplatte ist der Programmierradius PR_{CAM} zu beachten.

SDMT18


Abmessungen [mm]												
PR _{CAM}	a _p	Х	b									
4,82	3,5	1,24	13,77									


 $^{^{\}star}$ Im Lieferumfang enthalten.

SDGT | SDMT

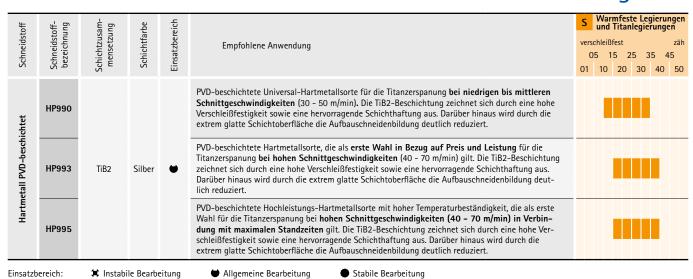
Radial-Wendeschneidplatte, vierschneidig

Vorschub pro Zahn (Auswahl nach Schneidkantenausführung) und Eintauchwinkel

*5	Schneid- kantenaus-	SD06				SD10						SD_	_14				SD18								
MZG	führung	a _p max. [mm]		f _z [mm/Zahn]		a _p max. [mm]		f _z [f _z [mm/Zahn]		a _p r	nax. [r	nm]	f _z [mm/Zahn]		hn]	a _p max. [mm]			f _z [mm/Zahn]		ahn]			
	MMS	0,3	0,5	1	0,3	0,5	1	0,5	8,0	1,3	0,5	0,9	1,4	0,6	1,2	2,2	0,8	1,2	2,2	1	2	3	1	1,6	2,5
S	SMH	0,3	0,5	1	0,3	0,5	0,9	0,5	0,7	1,2	0,5	0,7	1,2	0,6	1,2	2	0,6	1,2	2,2	1	2	3	1	1,5	2,5
	SMS		-			-		0,5	0,7	1,2	0,5	0,7	1,2		-			-			-			-	

Legende: MMS = Allgemeine Bearbeitung | SMH = Instabile Bearbeitung | SMS = Präzise Bearbeitung

^{**} ap max. ist abhängig von Fräsertyp und Einsatzfall.


Schnittwertempfehlung für Fräser mit Wendeschneidplatten

Vorschub und Schnittgeschwindigkeit

Schnittgeschwindigkeit für Fräser mit Wendeschneidplatten

	MZG*		Werkstoff	Festigkeit/	Hartmetall PVD-beschichtet										
				Härte [N/mm²]	HPS	990	HPS	993	HP	995					
				[HRC]	>0,6	<0,6	>0,6	<0,6	>0,6	<0,6					
	S1	S1.1	Titan, Titanlegierungen	< 400	50	55	60	70	60	70					
	52	S2.1	Titan, Titanlegierungen	< 1.200	35	45	45	55	45	55					
	32	S2.2	Titan, Titanlegierungen	> 1.200	30	35	40	50	40	50					
S	S 3	S3.1	Nickel, unlegiert und legiert	< 900	40	45	50	60	50	60					
	33	S3.2	Nickel, unlegiert und legiert	> 900	35	40	45	55	45	55					
	S 4	S4.1	Hochwarmfeste Superlegierung, Ni-, Co-, und Fe-basiert		30	35	40	50	40	50					
	S 5	S5.1	Wolfram- und Molybdänlegierungen		60	65	70	80	70	80					

Schneidstoffübersicht: Sorten und Sortenbeschreibung

Hinweis:

Beim Eckfräsen sollte die Schnitttiefe vorzugsweise größer oder kleiner als der Eckenradius der Schneide gewählt werden.

OptiMill®-Titan-HPC

Vielseitig schruppen und schlichten

Der vierschneidige Eckfräser OptiMill-Titan-HPC ist ein vielseitig einsetzbares Werkzeug. Der Schaftfräser aus Vollhartmetall kann sowohl Schruppbearbeitungen ausführen als auch zum Schlichten eingesetzt werden. Die spezielle Schneidkantenpräparation erzeugt optimale Oberflächen.

1 Neuartiges Nutprofil

- Für höchste Stabilität und sehr gute Spanabfuhr
- Polierte Spanräume für einen optimalen Spanabtransport

2 Ungleichteilung und -steigung

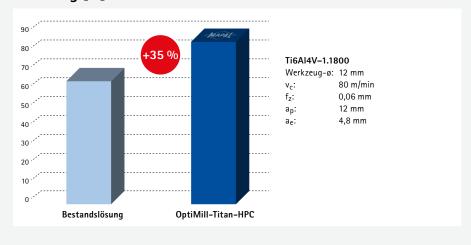
- Höchste Laufruhe durch unterschiedliche Spiralwinkelausführung und Schneidenteilung
- Vollnutfräsen bis zu einer Tiefe von 1,5xD möglich

3 Neue Beschichtungstechnologie

 AlTiN-basierte Multilayerbeschichtung für hohe thermische Belastungen

4 Verschiedene Eckradiusausführungen

 Für möglichst konturnahe Bearbeitungen am Bauteil

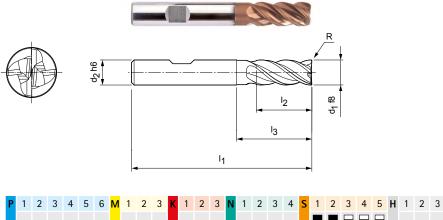


Merkmale

Baumaße:

- Eckfräser Schaftform
- ø-Bereich: 6 mm bis 25 mm
- Schneidenzahl 4
- Ungleichteilung
- Schaftaufnahme 6, 8, 10, 12, 16, 20
 und 25 mm
- Schneidkantenpräparation erzeugt optimale Oberflächen

Standweg [m]


OptiMill®-Titan-HPC

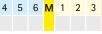
Eckfräser, lange Ausführung mit Hals SCM394

Ausführung: Fräserdurchmesser: 6,00 - 25,00 mm

Schneidstoff: HP826 Schneidenzahl: Spiralwinkel: 43°

Besonderheit: Ungleichteilung





Lagerhaltige Vorzugsbaureihe

			Baumaße				Spezifikation Be			
d ₁ f8	d ₂ h6	I ₁	l ₂	d_3	l ₃	R				
6,00	6	57	13	5,8	20	0,50	SCM394-0600Z04R-R0050HB-HP826	31304509		
6,00	6	57	13	5,8	20	1,00	SCM394-0600Z04R-R0100HB-HP826	31304544		
8,00	8	63	21	7,8	25	0,50	SCM394-0800Z04R-R0050HB-HP826	31304547		
8,00	8	63	21	7,8	25	1,00	SCM394-0800Z04R-R0100HB-HP826	31304549		
10,00	10	72	22	9,8	30	0,50	SCM394-1000Z04R-R0050HB-HP826	31304552		
10,00	10	72	22	9,8	30	1,00	SCM394-1000Z04R-R0100HB-HP826	31304554		
12,00	12	83	26	11,8	36	0,50	SCM394-1200Z04R-R0050HB-HP826	31304557		
12,00	12	83	26	11,8	36	1,00	SCM394-1200Z04R-R0100HB-HP826	31304558		
16,00	16	92	36	15,8	42	1,00	SCM394-1600Z04R-R0100HB-HP826	31304573		
16,00	16	92	36	15,8	42	2,00	SCM394-1600Z04R-R0200HB-HP826	31304575		
20,00	20	104	41	19,7	55	1,00	SCM394-2000Z04R-R0100HB-HP826	31304580		
20,00	20	104	41	19,7	55	2,00	SCM394-2000Z04R-R0200HB-HP826	31304582		
25,00	25	136	50	24,7	65	2,00	SCM394-2500Z04R-R0200HB-HP826	31304586		

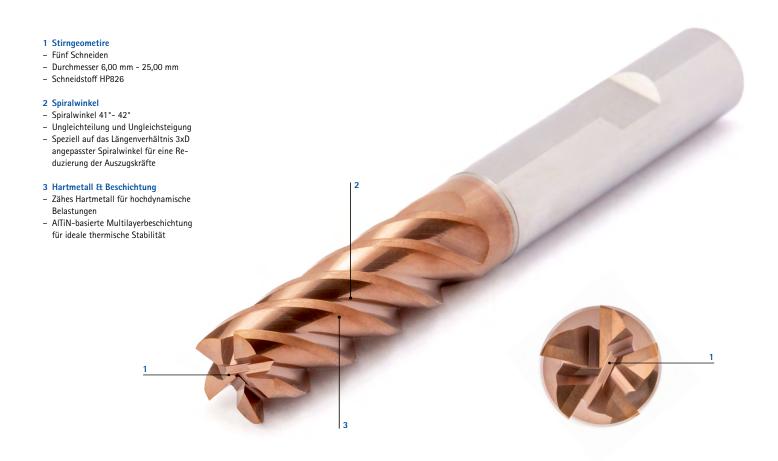
Auf Anfrage erhältlich

8,00	8	63	21	7,8	25	2,00	SCM394-0800Z04R-R0200HB-HP826	31304551
10,00	10	72	22	9,8	30	2,00	SCM394-1000Z04R-R0200HB-HP826	31304555
12,00	12	83	26	11,8	36	2,00	SCM394-1200Z04R-R0200HB-HP826	31304570
12,00	12	83	26	11,8	36	3,00	SCM394-1200Z04R-R0300HB-HP826	31304571
16,00	16	92	36	15,8	42	3,00	SCM394-1600Z04R-R0300HB-HP826	31304576
16,00	16	92	36	15,8	42	4,00	SCM394-1600Z04R-R0400HB-HP826	31304578
20,00	20	104	41	19,7	55	3,00	SCM394-2000Z04R-R0300HB-HP826	31304583
20,00	20	104	41	19,7	55	4,00	SCM394-2000Z04R-R0400HB-HP826	31304585
25,00	25	136	50	24,7	65	3,00	SCM394-2500Z04R-R0300HB-HP826	31304588
25,00	25	136	50	24,7	65	4,00	SCM394-2500Z04R-R0400HB-HP826	31304589

Fortsetzung auf nächster Seite.

OptiMill-Titan-HPC | Vollhartmetall-Eckfräser SCM394, äußere Kühlmittelzufuhr

Konfigurierbare Merkmale

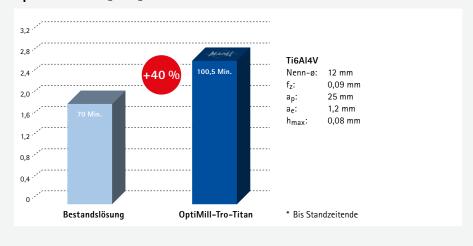

Zubehör

OptiMill®-Tro-Titan

Fünfschneidiger Trochoidfräser für Fräsen in Titanwerkstoffen

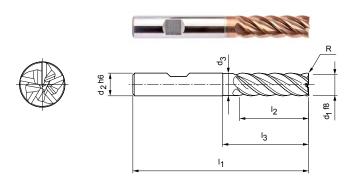
Der fünfschneidige Eckfräser OptiMill-Tro-Titan zeichnet sich durch maximales Zeitspanvolumen bei gleichzeitig hoher Oberflächengüte aus. Die Ungleichteilung und -steigung vermeidet Vibrationen und führt zu einem ruhigen Schnittverhalten. Er ist speziell für trochoides Fräsen im Teilschnitt, Besäumen und für Schnitttiefen bis 3xD ausgelegt.

Merkmale


Baumaße:

- Lagerhaltige Vorzugsbaureihe:
- ø-Bereich: 6 mm bis 20 mm
- Auf Anfrage erhältlich:

Durchmesser: 14 mm, 18 mm und 25 mm


- Schneidenzahl 5
- Ungleichteilung
- Speziell für trochoides Fräsen
- Für Schnitttiefen bis 3xD
- Einsatz der kompletten Schneidenlänge

Spanvolumen [dm³] *

OptiMill®-Tro-Titan

Eckfräser, Ausführung 3xD mit Hals SCM630

Wuchtgüte:

Ausführung: Fräserdurchmesser: 6,00 - 25,00 mm

Schneidstoff: HP826 Schneidenzahl: 41°-42° Spiralwinkel:

> Schneidenanteil gewuchtet auf G2.5

DIN ISO1940-G2.5

Besonderheiten: Ungleichteilung

Anwendung:

Speziell für trochoides Fräsen - Teilschnitt/ Besäumung. Für Schnitttiefen bis 3xD.

1 2 3 4 5 6 <mark>M</mark> 1 2 3 <mark>K</mark> 1 2 3 N

Lagerhaltige Vorzugsbaureihe

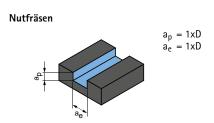
			Baumaße		Z	Spezifikation	Bestell-Nr.		
d ₁ f8	d ₂ h6	d_3	I ₁	l ₂	l ₃	R			
6,00	6	5,8	62	18	25	0,1	5	SCM630-0600Z05R-R0010HB-HP826	30651032
8,00	8	7,8	68	24	30	0,2	5	SCM630-0800Z05R-R0020HB-HP826	30651033
10,00	10	9,8	80	30	35	0,2	5	SCM630-1000Z05R-R0020HB-HP826	30651034
12,00	12	11,8	93	36	45	0,3	5	SCM630-1200Z05R-R0030HB-HP826	30651035
16,00	16	15,8	108	48	55	0,3	5	SCM630-1600Z05R-R0030HB-HP826	30651037
20,00	20	19,8	126	60	70	0,3	5	SCM630-2000Z05R-R0030HB-HP826	30651039

Auf Anfrage erhältlich

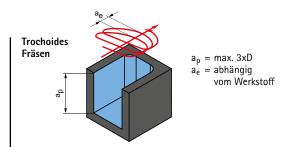
14,00	14	-	99	42	50	0,3	5	SCM630-1400Z05R-R0030HB-HP826	30651036
18,00	18	-	117	54	67	0,3	5	SCM630-1800Z05R-R0030HB-HP826	30651038
25.00	25	_	150	75	92	0.4	5	SCM630-2500Z05R-R0040HB-HP826	30651040

Konfigurierbare Merkmale

SCM630-0600Z05R-R0010**HA**-HP826


Schaftform HA

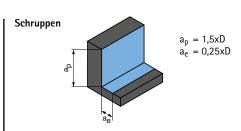
Zubehör

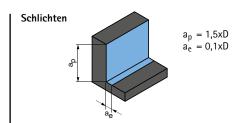

Schnittwertempfehlung für OptiMill®-Titan-HPC und OptiMill®-Tro-Titan

Vorschub und Schnittgeschwindigkeit

OptiMill-Titan-HPC | SCM394

Ī	MZG*		Werkstoff	Festigkeit/	K	ühlur	_	V _C			f _z	[mm/Zah	n]			
				Härte [N/mm²]				[m/min]			Fräserdı	ırchmess	er [mm]			
				[HRC]	MMS/Lu	Trocken	KSS		6,00	8,00	10,00	12,00	16,00	20,00	25,00	
	S1	S1.1	Titan, Titanlegierungen	< 400			✓	85	0,035	0,045	0,054	0,062	0,075	0,086	0,096	
	S	S2.1	Titan, Titanlegierungen	< 1.200			✓	80	0,029	0,037	0,044	0,050	0,061	0,070	0,078	
	32	S2.2	Titan, Titanlegierungen	> 1.200			✓	50	0,025	0,033	0,039	0,045	0,055	0,062	0,070	




OptiMill-Tro-Titan | SCM630

MZG*		ZG*	Werkstoff	Festigkeit/	:/ Kühlung		ng	V _C	f _z [mm]	a _e [mm]	h _m max. [mm] in % vom D	
				Härte [N/mm²] [HRC]	MMS/Luft	MMS/Luft Trocken KSS	[m/min]	in % vom D	in % vom D			
	S1	S1.1	Titan, Titanlegierungen	< 400			✓	110 - 170	0,65 - 1,3	6 - 12	0,52 - 0,6	
S	S	S2.1	Titan, Titanlegierungen	< 1.200			✓	90 - 150	0,6 - 1,2	5 - 10	0,46 - 0,56	
	32	S2.2	Titan, Titanlegierungen	> 1.200			✓	70 - 130	0,4 - 1,0	5 - 10	0,42 - 0,54	

Hinweis

Beim trochoiden Fräsen verändern sich die angegebenen Schnittbedingungen während des Bearbeitungsprozesses. Dies ist auch abhängig von der verwendeten CAM-Software sowie der Bearbeitungsstellung des Werkzeugs im Werkstück. Vorschub und Eingriffsbreite bzw. Eingriffswinkel ändern sich während der Bearbeitung ständig, um je nach Kontur eine möglichst konstante Spanmittendicke zu erzielen.

v _c	f_z [mm/Zahn] v_c f_z [mm/Zahn]														
[m/min]		Fräserdurchmesser [mm] [m/min]		Fräserd	lurchmesse	er [mm]									
	6,00	8,00	10,00	12,00	16,00	20,00	25,00		6,00	8,00	10,00	12,00	16,00	20,00	25,00
135	0,059	0,076	0,091	0,104	0,127	0,146	0,163	160	0,094	0,120	0,144	0,165	0,202	0,230	0,257
120	0,049	0,062	0,074	0,085	0,104	0,119	0,133	145	0,077	0,098	0,117	0,135	0,165	0,189	0,210
80	0,043	0,055	0,066	0,076	0,093	0,106	0,118	95	0,068	0,087	0,104	0,120	0,147	0,168	0,187

Bearbeitungsbeispiel							
	,						
TiAl6V4	$\emptyset = 12 \text{ mm}$ $v_c = 140 \text{ m/min}$ $f_z = 0.09 \text{ mm}$	$a_e = 1.2 \text{ mm}$ $a_p = 30 \text{ mm}$					

Zubehör NeoMill®-Titan

Fräseranzugsschrauben und Kühlmittelverschlussschrauben

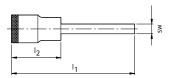
Baureihe		Fräser- durchmesser	Durchmesser	Fräseranzu	gsschraube	Kühlmittel-
		durchmesser	Fräserdorn	Ohne Innenkühlung*	Mit Innenkühlung	verschlussschraube
					=,	
NeoMill-Titan-2-Corner		40	16	10003638	31006779	-
		50	22	10003660	31006800	-
	XPKT11	63	27	10003677	31008546	-
		80	32	10003691	31008547	-
		100	32	10003691	31008547	-
NeoMill-Titan-2-Shell		40	16	10003638	31006779	31143577
	XPKT11	50	22	10003660	31006800	10033245
	AFNIII	63	27	10003677	31008546	31248082
Can.		80	32	10003691	31008547	31248083
NeoMill-4-Hi-Feed90		40	16	31166231	-	-
	SD10	50 - 66	22	10003659	-	-
		80	27	10003677	31008546	-
		50 - 52	22	31166232	-	-
		63 - 66	22	10003659	-	-
	SD14	80	27	10003677	31008546	-
		100	32	10003690	-	-
		125	40	10081881	-	-
		80	27	10003677	31008546	-
		100	32	10003690	-	-
	SD18	125	40	10081881	-	-
		160	40	10006594 (x4)	-	-
		200	60	10006594 (x4)	-	-

Maßangaben in mm.

 $^{^{\}star}$ Im Lieferumfang des Grunkörpers enthalten.

Hinweis: Fräseranzusschraube ohne Innenkühlung ist die erste Wahl beim Einsatz von Aufsteckfräserdornen mit dezentraler Kühlmittelübergabe (siehe Seite 96), da hierzu ein höherer Kühlmitteldurchfluss erzielt werden kann. Fräseranzugsschrauben mit Innenkühlung sind nur dann einzusetzen, wenn die Kühlmittelübergabe zwischen Aufsteckfräserdorn und Fräser nur über die Schraube erfolgen kann.

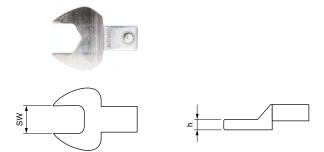
Zubehör Drehmomentschlüssel und Sechskant-Einsätze



Drehmomentschlüssel

HSK-C	I ₁	Drehmomentbereich [Nm]	Bestell-Nr.	Ausführung Umschaltknarre
32 - 40	210	4 - 20	30149002*	1/4"
32 - 40	210	4 - 20	10040125**	1/4"
50 - 80	240	8 - 40	30148986***	3/8"
50 - 80	240	8 - 40	10040126**	3/8"
100	333	10 - 60	30149001****	3/8"
-	333	10 - 60	10074788**	3/8"
-	435	25 - 130	30353267**	1/2"

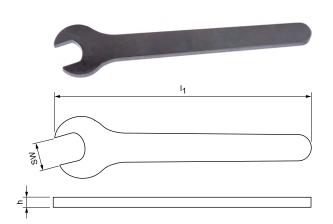
- Lieferumfang:
 * Als Set mit auswechselbarem Sechskant-Einsatz (SW3).
- ** Drehmomentschlüssel ohne Sechskant-Einsatz.
- *** Als Set mit auswechselbaren Sechskant-Einsätzen (SW4, 5, 6).
- **** Als Set mit auswechselbarem Sechskant-Einsatz (SW8).



Sechskant-Einsätze

Nenngröße		Baumaße		Bestell-Nr.	Ausführung	
HSK-C	I ₁	l ₂	SW		Antrieb	
32 - 40	55	25	3	10040122	1/4"	
50	63	28	4	10040123	3/8"	
63	73	28	5	10040124	3/8"	
80	78	28	6	10074792	3/8"	
100	95	32	8	10074793	3/8"	
-	140	38	10	30353265	1/2"	
-	140	38	12	30353266	1/2"	
-	140	38	14	30707823	1/2"	

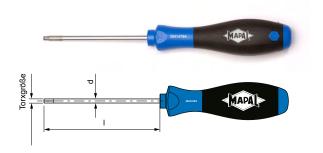
Zubehör Montagehilfsmittel – Drehmoment–, Maulsteck– und Montageschlüssel

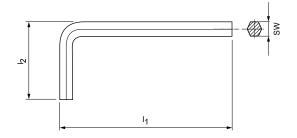


Drehmomentschlüssel

Einsteckschaft	Anzugswert [Nm]	Gesamtlänge I ₁	Bestell-Nr.
9x12	2 - 25	274	30386735
14x18	20 - 200	470,5	30386736

Mauleinsteckschlüssel für Drehmomentschlüssel

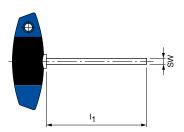

	Abmessungen					
SW	h	Einsteckschaft				
6	2,3	9 x 12	30376387			
8	2,8	9 x 12	30376388			
10	3,8	9 x 12	30376390			
11	3,8	9 x 12	30672376			
13	3,8	9 x 12	30376392			
15	3,8	9 x 12	30376393			
16	4,8	9 x 12	30376394			
18	4,8	9 x 12	30673296			
21	4,8	14 x 18	30376395			



Montageschlüssel

Trennstellen- größe CFS			Bestell-Nr.	
grobe Cr3	SW	I ₁	h	
6	6	75	2,3	30352660
8	8	92	2,8	30352661
10	10	100	3,8	30352662
12	13	135	3,8	30352663
16	16	145	4,8	30352667
20	21	195	4,8	30352668

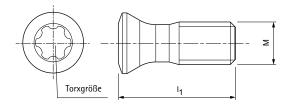
Zubehör allgemein – Schraubendreher



Schraubendreher

	Abmessungen		Bezeichnung	Bestell-Nr.
Torxgröße	I	d		
6IP	60	3,5		30414758
7IP	60	3,5		30414759
8IP	60	3,5	TODY DUICE	30414760
9IP	60	4		30414761
10IP	80	4	TORX PLUS®	30414763
15IP	80	4		30414764
20IP	100	4		30414766
25IP	100	4,5		30414767
TX8	60	3,5	TORX®	10019467
TX15	80	4	IONX	10019469

Sechskant-Winkelschraubendreher


	Abmessungen		Bezeichnung	Bestell-Nr.
SW	SW I ₁			
1,5	46,5	15,5	IS02936-X	10004870
2	52	18	1202930-7	10004356

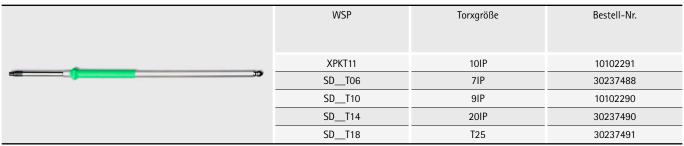
Sechskant-Schraubendreher mit Quergriff

HFS- Größe	Schlüsselweite SW		Kurze Ausführung	Lange Ausführung		
Grobe	300	I ₁	Spezifikation	Bestell-Nr.	I ₁	Bestell-Nr.
10	2,5	100	-	10006233	200	10032722
12, 14	3	100	MN5221-31	10006234	200	10025313
16, 20	4	100	MN5221-32	10006235	200	10018010
24	5	100	MN5221-33	10006236	200	10013349
-	6	100	MN5221-34	10006237	-	-
-	8	100	MN5221-35	10006238	-	-
-	10	100	-	30353270	-	-
-	12	-	-	-	200	30353272

Ersatzteile für NeoMill-Fräswerkzeuge, Anzugsdrehmomente und Torx-Verlängerung

Spannschraube für Fräser NeoMill-Titan

WSP	WSP-Größe	Spannschraube							
		Abmessung	Bezeichnung	Anzugsdreh- moment [Nm]	Torxgröße	Bestell-Nr.			
XPKT	1104	M3,5X8,1	TORX PLUS® - M3,5X8,1-TX10-IP	2,8	10IP	30979520			


Spannschraube für Fräser NeoMill-4-HiFeed

WSP	WSP-Größe	Spannschraube							
		Abmessung	Bezeichnung	Anzugsdreh- moment [Nm]	Torxgröße				
	06	M2,2X5,2	TORX PLUS® - M2,2X5,2-TX7-IP	1,2	7IP	31161853			
SD	10	M3X8,3	TORX PLUS® - M3X8,3-TX9-IP	2	9IP	31161852			
טכ	14	M5X10,8	TORX PLUS® - M5X10,8-TX20-IP	5	20IP	31161851			
	18	M6X15	TORX PLUS® - M6X15-T25	6	T25	31161862			

Anzugsdrehmomente bei Gewindestiften für Kühlmittelaustritte

Gewindestift für Kühlmittelaustritt	Bestell-Nr.	Abmessung Schraube	Größe	Anzugsdrehmoment [Nm]
Geschlossene Variante	10003420	M3 x 4	ISO 4026-M3X4-45H	1,0
Mit Innendurchmesser	31291811	M3 x 4	MN620-AD M3X4-Ø1.5	1,0
Mit Innendurchmesser	31291814	M3 x 4	MN620-AD M3X4-Ø1.0	1,0
Mit Innendurchmesser	31291816	M3 x 4	MN620-AD M3X4-Ø0.5	1,0

Torx-Verlängerung zur Montage der Spannschrauben mit Drehmomentschlüssel

Zubehör allgemein – Drehmomentwerkzeugsatz

$Torque Vario ^{\circledast} - S \ Drehmoment - Schrauben drehers atz$

Bereich	Lieferumfang	Merkmale	Bestell-Nr.
1,0 - 5,0 Nm	• 1 TorqueVario-S Drehmoment-Schraubendreher	 Genauigkeit ± 6%, rückführbar auf nationale Normale Numerische Drehmomentwert-Anzeige in Fensterskala Drehmoment stufenlos einstellbar 	10103019
2,0 - 8,0 Nm	• 1 Torque-Setter	 Ergonomischer Mehrkomponentengriff Klicksignal bei Erreichen des eingestellten Drehmoments 	31363399

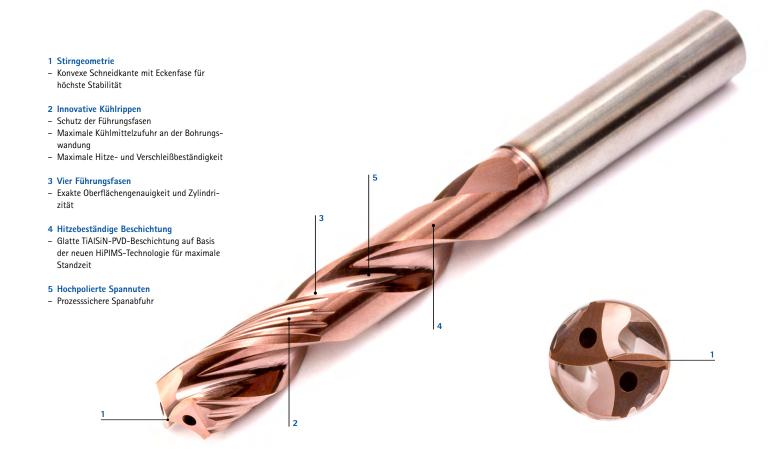
$Torque Vario ^{\circledast}\text{-}STplus \ Quergriff-Drehmomentwerk zeugsatz \ 11-tlg. \ Set$

Modell: 5-14 Nm

Lieferumfang	Merkmale	Bestell-Nr.
 1 Quergriff-Drehmomentwerkzeug 1 Torque-Tplus Setter 1 Bit-Universalhalter 1/4" 3 TORX® Standard-Bits T25x25 / T30x25 / T40x25 3 Sechskant Standard-Bits 4,0x25 / 5,0x25 / 6,0x25 2 Adapterklingen für die Steckschlüssel 1 Torque-Tplus Adapterklinge 1/4" 1 Torque-Tplus Adapterklinge 3/8" Stabile Metallbox 	 Genauigkeit ± 6%, rückführbar auf nationale Normale Numerische Drehmomentwert-Anzeige in Fensterskala Drehmoment stufenlos einstellbar Komfortabler Quergriff mit Weichzonen Klicksignal bei Erreichen des eingestellten Drehmoments 	30415173

VOLLBOHREN

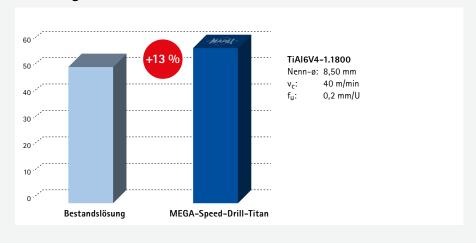
Vollbohren


MEGA-Speed-Drill-Titan	56
Schnittwertempfehlung	59
Technischer Anhang	
Bezeichnungsschlüssel	122

MEGA-Speed-Drill-Titan

Kosteneffizient und produktiv

Der zweischneidige Hochgeschwindigkeitsbohrer ist mit vier Führungsfasen für eine optimale Rundheit der Bohrung ausgestattet. Das Kühlmittel wird an der Mantelfläche entlang nach hinten geleitet. Damit erfahren die Führungsfasen die maximale Kühlung und führen die entstehende Hitze ab.



Merkmale

Baumaße:

- Lagerhaltige Vorzugsbaureihe:
 ø-Bereich: 3,00 bis 16,00 mm
 Schaftform HA
- Konfigurierbare Durchmesser ø-Bereich: 3,00 bis 20,00 mm Schaftform HB, HE
- 5xD mit innerer Kühlmittelzufuhr
- Niedrige Zykluszeiten

Standweg [m]

MEGA-Speed-Drill-Titan

Vollhartmetall-Spiralbohrer SCD961 (5xD), innere Kühlmittelzufuhr

 I_3 11

Ausführung: Bohrerdurchmesser: 3,00 - 20,00 mm

Bohrungstoleranz: IT 9 HP184 Schneidstoff: Schneidenanzahl: 2 Anzahl Führungsfasen: Spitzenwinkel: 140° Spiralwinkel: 30°

		Baun	Schaftform HA				
d ₁ h7	d ₂ h6	I ₁	l ₂	l ₃	I ₄	Spezifikation	Bestell-Nr.
3,00	6	66	28	23	36	SCD961-0300-2-4-140HA05-HP184	31315779
3,10	6	66	28	23	36	SCD961-0310-2-4-140HA05-HP184	31315820
3,20	6	66	28	23	36	SCD961-0320-2-4-140HA05-HP184	31315821
3,30	6	66	28	23	36	SCD961-0330-2-4-140HA05-HP184	31315822
3,40	6	66	28	23	36	SCD961-0340-2-4-140HA05-HP184	31315823
3,50	6	66	28	23	36	SCD961-0350-2-4-140HA05-HP184	31315824
3,60	6	66	28	23	36	SCD961-0360-2-4-140HA05-HP184	31315825
3,70	6	66	28	23	36	SCD961-0370-2-4-140HA05-HP184	31315826
3,80	6	74	36	29	36	SCD961-0380-2-4-140HA05-HP184	31315827
4,00	6	74	36	29	36	SCD961-0400-2-4-140HA05-HP184	31315828
4,10	6	74	36	29	36	SCD961-0410-2-4-140HA05-HP184	31315829
4,20	6	74	36	29	36	SCD961-0420-2-4-140HA05-HP184	31315830
4,30	6	74	36	29	36	SCD961-0430-2-4-140HA05-HP184	31315831
4,40	6	74	36	29	36	SCD961-0440-2-4-140HA05-HP184	31315832
4,50	6	74	36	29	36	SCD961-0450-2-4-140HA05-HP184	31315833
4,60	6	74	36	29	36	SCD961-0460-2-4-140HA05-HP184	31315834
4,70	6	74	36	29	36	SCD961-0470-2-4-140HA05-HP184	31315835
4,80	6	82	44	35	36	SCD961-0480-2-4-140HA05-HP184	31315836
5,00	6	82	44	35	36	SCD961-0500-2-4-140HA05-HP184	31315837
5,10	6	82	44	35	36	SCD961-0510-2-4-140HA05-HP184	31315838
5,20	6	82	44	35	36	SCD961-0520-2-4-140HA05-HP184	31315839
5,30	6	82	44	35	36	SCD961-0530-2-4-140HA05-HP184	31315840
5,40	6	82	44	35	36	SCD961-0540-2-4-140HA05-HP184	31315841
5,50	6	82	44	35	36	SCD961-0550-2-4-140HA05-HP184	31315842
5,80	6	82	44	35	36	SCD961-0580-2-4-140HA05-HP184	31315843
5,90	6	82	44	35	36	SCD961-0590-2-4-140HA05-HP184	31315844
6,00	6	82	44	35	36	SCD961-0600-2-4-140HA05-HP184	31315845
6,20	8	91	53	43	36	SCD961-0620-2-4-140HA05-HP184	31315846
6,50	8	91	53	43	36	SCD961-0650-2-4-140HA05-HP184	31315847
6,60	8	91	53	43	36	SCD961-0660-2-4-140HA05-HP184	31315848
6,80	8	91	53	43	36	SCD961-0680-2-4-140HA05-HP184	31315849
7,00	8	91	53	43	36	SCD961-0700-2-4-140HA05-HP184	31315850
7,10	8	91	53	43	36	SCD961-0710-2-4-140HA05-HP184	31315851
7,30	8	91	53	43	36	SCD961-0730-2-4-140HA05-HP184	31315852
7,40	8	91	53	43	36	SCD961-0740-2-4-140HA05-HP184	31315853

MEGA-Speed-Drill-Titan | Vollhartmetall-Spiralbohrer SCD961 (5xD), innere Kühlmittelzufuhr

Baumaße						Schaftform HA			
d ₁ h7	d ₂ h6	I ₁	l ₂	l ₃	I ₄	Spezifikation	Bestell-Nr.		
7,50	8	91	53	43	36	SCD961-0750-2-4-140HA05-HP184	31315854		
7,80	8	91	53	43	36	SCD961-0780-2-4-140HA05-HP184	31315855		
8,00	8	91	53	43	36	SCD961-0800-2-4-140HA05-HP184	31315856		
8,10	10	103	61	49	40	SCD961-0810-2-4-140HA05-HP184	31315857		
8,20	10	103	61	49	40	SCD961-0820-2-4-140HA05-HP184	31315858		
8,30	10	103	61	49	40	SCD961-0830-2-4-140HA05-HP184	31315859		
8,40	10	103	61	49	40	SCD961-0840-2-4-140HA05-HP184	31315860		
8,50	10	103	61	49	40	SCD961-0850-2-4-140HA05-HP184	31315861		
8,80	10	103	61	49	40	SCD961-0880-2-4-140HA05-HP184	31315862		
9,00	10	103	61	49	40	SCD961-0900-2-4-140HA05-HP184	31315863		
9,80	10	103	61	49	40	SCD961-0980-2-4-140HA05-HP184	31315864		
10,00	10	103	61	49	40	SCD961-1000-2-4-140HA05-HP184	31315865		
10,20	12	118	71	56	45	SCD961-1020-2-4-140HA05-HP184	31315866		
10,50	12	118	71	56	45	SCD961-1050-2-4-140HA05-HP184	31315867		
11,00	12	118	71	56	45	SCD961-1100-2-4-140HA05-HP184	31315868		
11,80	12	118	71	56	45	SCD961-1180-2-4-140HA05-HP184	31315869		
12,00	12	118	71	56	45	SCD961-1200-2-4-140HA05-HP184	31315870		
12,50	14	124	77	60	45	SCD961-1250-2-4-140HA05-HP184	31315871		
13,00	14	124	77	60	45	SCD961-1300-2-4-140HA05-HP184	31315872		
13,50	14	124	77	60	45	SCD961-1350-2-4-140HA05-HP184	31315873		
14,00	14	124	77	60	45	SCD961-1400-2-4-140HA05-HP184	31315874		
15,80	16	133	83	63	48	SCD961-1580-2-4-140HA05-HP184	31315875		
16,00	16	133	83	63	48	SCD961-1600-2-4-140HA05-HP184	31315876		

Konfigurierbare Merkmale

SCD961-**0470**-2-4-140**HE**05-HP184

Zubehör

MHC UNIQ-Dream Chuck Seite 86

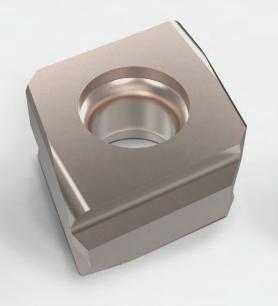
Werkzeugdurchmesser $d_1 = 4,70 \text{ mm}$

Schaftform HE

Abmessungen konfigurierbare Baureihe

d ₁ min.	d ₁ max.	d ₂ h6	I ₁	l ₂	l ₃	l ₄
2.00	2.70	6	CC	20	22	20
3,00	3,70	6	66	28	23	36
3,71	4,70	6	74	36	29	36
4,71	6,00	6	82	44	35	36
6,01	6,80	8	91	53	43	36
6,81	8,00	8	91	53	43	36
8,01	9,00	10	103	61	49	40
9,01	10,00	10	103	61	49	40
10,01	11,00	12	118	71	56	45
11,01	12,00	12	118	71	56	45
12,01	14,00	14	124	77	60	45
14,01	16,00	16	133	83	63	48
16,01	18,00	18	143	93	71	48
18,01	20,00	20	153	101	77	50

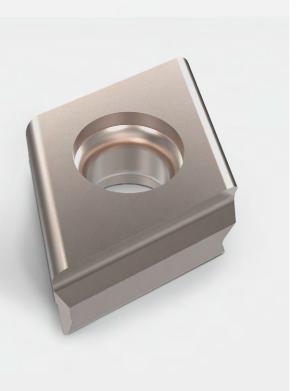
Maßangaben in mm. Schnittwertempfehlung siehe Kapitelende. Sonderausführungen und andere Beschichtungen auf Anfrage.


Schnittwertempfehlung für Vollhartmetallbohrer

Vorschub und Schnittgeschwindigkeit

MEGA-Speed-Drill-Titan | SCD961

	MZG*		Werkstoff	Festigkeit/Härte	Schnittgeschwindigkeit v _c [m/min]				Vorschub f [mm] bei Bohrerdurchmesser					
				[N/mm ²] [HRC]	IK	AK	MMS	Luft	3,00	4,50	6,50	9,50	14,00	20,00
	S1	S1.1	Titan, Titanlegierungen	< 400	40	25			0,077	0,103	0,134	0,173	0,219	0,259
	S	S2.1	Titan, Titanlegierungen	< 1.200	30	20			0,066	0,088	0,115	0,149	0,188	0,222
	32	S2.2	Titan, Titanlegierungen	> 1.200	25	15			0,055	0,073	0,095	0,124	0,157	0,185



AUFBOHREN

Aufbohren

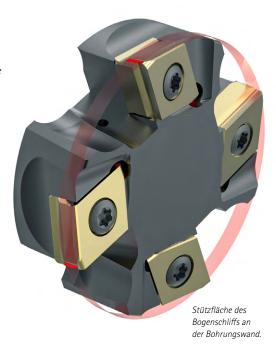
Aufbohren mit Tangentialtechnologie ______ 62

Aufbohren in Titan

Werkzeuge mit Tangentialtechnologie

Mit den Wendeschneidplatten von MAPAL für die Titanbearbeitung werden bauteilspezifische Sonderwerkzeuge bestückt – für höchste Produktivität, wirtschaftliche Prozesse und stabile Bearbeitungskonzepte. Späne werden über die angepassten Spannuten aus der Scherzone befördert und verhindern so den Verschleiß am Werkzeug.

Aufbohren - wirtschaftlich und produktiv


Die Wendeschneidplatten zum Aufbohren von Titan überzeugen mit vier nutzbaren Schneidkanten und einer leistungsstarken PVD-Beschichtung. Die Schneiden sind in drei Größen verfügbar. So ist ihr Einsatz in einem sehr breiten Anwendungsspektrum möglich. Die ein- oder mehrstufigen Sonderwerkzeuge zeichnen sich durch eine extrem hohe Wirtschaftlichkeit und ein einfaches Handling aus.

Tangentialtechnologie

Entscheidend für die hohe Leistungsfähigkeit der MAPAL Aufbohrwerkzeuge ist die Tangentialtechnologie. Diese Technologie erlaubt auf Grund einer stabileren Schneidplattengeometrie gegenüber Radial-Wendeschneidplatten höhere Arbeitswerte und folglich ein größeres Zeitspanvolumen. Zudem zeichnen sich Tangentialwerkzeuge durch eine hohe Laufruhe aus. Dadurch werden hervorragende Werkzeugstandzeiten und sehr gute Bauteilqualitäten erreicht.

Beste Bearbeitungsergebnisse bei Längen-Durchmesser-Verhältinis > 3,5xD durch Bogenschliff

Durch den bei ISO-Wendeschneidplatten üblichen Freiwinkel erfolgt bei der Bohrungsbearbeitung eine Abstützung des Werkzeuges nur bedingt. Werkzeuge neigen dann zu Schwingungen, die sich negativ auf die erzielte Oberflächengüte und die Standzeit auswirken. Um dem zu begegnen, hat MAPAL den Bogenschliff entwickelt. Diese spezielle Geometrie ist eine Stützfläche an der Schneide, die vergleichbar mit einer Rundschlifffase bei festen Reibahlen das Werkzeug in der Bohrung abstützt.

REIBEN | FEINBOHREN

Reiben | Feinbohren

Produktübersicht	60
FixReam FXR	
Einführung Technologie	68
FixReam FXR510 für Durchgangsbohrung	69
FixReam FXR505 für Grundlochbohrung	70
HPR-Wechselkopfreibahlen	
Einführung Technologie	7 [.]
HPR131 für Durchgangsbohrung	7:
HPR110 für Durchgangsbohrung	7:
HPR180 für Grundlochbohrung	74
HPR150 für Grundlochbohrung	7!
Schnittwertempfehlung	70
Technischer Anhang	
Bezeichnungsschlüssel	124

PRODUKTÜBERSICHT

Reiben und Feinbohren

Werkzeuge zur Feinbearbeitung von Bohrungen stellen die Kernkompetenz von MAPAL dar. Mit der "Urreibahle" im Jahr 1954 begann die Erfolgsgeschichte, die MAPAL bis heute in diesem Bereich schreibt. Die jahrzehntelange Erfahrung und kontinuierliche Weiterentwicklungen und Optimierungen der Werkzeuglösungen stellen sicher, dass MAPAL entsprechend der Komplexität der Bearbeitung und der Präzisionsanforderungen die passende Lösung bietet.

Neben maßgeschneiderten Sonderlösungen steht dabei ein vielfältiges Standardprogramm an Werkzeugen zum Reiben und Feinbohren zur Verfügung. Reiben und Feinbohren sind die gebräuchlichsten Verfahren zum Feinbearbeiten von Bohrungen und überzeugen durch präziseste Ergebnisse. Je nach Komplexität der Bearbeitung und den Anforderungen an Präzision und Oberfläche bietet MAPAL die passende Lösung: Für höchste Präzision stehen Einschneidenreibahlen, Feinbohrwerkzeuge mit Führungsleisten und WP-Schneiden zur Verfügung.

Zudem umfasst das Programm feste Mehrschneidenreibahlen, HPR-Wechselkopfreibahlen mit hochgenauem Spannsystem, Hochleistungsreibahlen aus Hartmetall oder Cermet sowie Systeme für die Bearbeitung großer Durchmesser.

Reiben

Erste Wahl für ...

- ... die Bearbeitung mit hohen Vorschüben
- ... maximale Leistung in der Serienfertigung
- ... die Bearbeitung ohne zusätzlichen Einstellaufwand
- \dots Bearbeitungen mit Durchmesser > 3 mm

Bohrungstoleranz

bis

Feste Mehrschneidenreibahlen

Hochleistungsreibahle FixReam - FXR

Die Hochleistungsreibahlen der FXR-Reihe sind mit unterschiedlichen Schneidstoffen und Beschichtungen verfügbar. So können nahezu sämtliche Werkstoffe mit ihnen wirtschaftlich und prozesssicher bearbeitet werden. Sie sind das Mittel der Wahl, wenn kurze Taktzeiten gefragt sind. Ohne jeglichen Einstellaufwand erreichen die Werkzeuge, die im Durchmesserbereich 3,701 bis 20,200 mm erhältlich sind, IT6-Toleranzen.

ø-Bereich: 3.701 - 20.200 mm*

Wechselkopfreibahlen

HPR-Wechselkopfreibahle mit HFS-Trennstelle

Ist ein Höchstmaß an Wirtschaftlichkeit gefragt, empfiehlt sich im kleinen Durchmesserbereich der Einsatz der HPR-Wechselkopfreibahlen. Durch die hochpräzise Trennstelle HFS sind – trotz Wechselkopfsystem – ein exakter Rundlauf sowie eine hohe Wechselgenauigkeit garantiert. Dabei ist das Handling denkbar einfach. Die HPR-Reibahlen sind mit fest gelöteten Schneiden sowie mit justierbaren Schneiden verfügbar.

ø-Bereich: 7,000 - 65,000 mm*

Lösungen für große Durchmesser

Lösungen für große Durchmesser

Mehrschneidige Hochleistungsreibahlen für große Durchmesserbereiche. HPR400 schnelles Wechseln der Schneiden vor Ort ohne lange Wiederaufbereitung. HPR400 plus vier statt bisher einer Schneidkante. Einfaches Wenden und Wechseln der Schneidplatten.

ø-Bereich: 63,000 - 319,999 mm*

9-Bereich: 63,000 - 319,999 mm

Seite 68

Seite 71

Siehe Katalog "BOHRUNGSBEARBEITUNG"

^{*} Der Durchmesserbereich kann je nach Baureihe variieren.

Scannen Sie den QR-Code, um den neuen
Katalog "BOHRUNGSBEARBEITUNG"
downzuloaden.

Weitere Informationen unter: www.mapal.com

Feinbohren

Erste Wahl für ...

- ... instabile Bearbeitungsbedingungen
- ... die Bearbeitung mit einem Pendelhalter auf einer Drehmaschine
- ... unterbrochene Bearbeitungen und dünnwandige Teile
- ... ungünstige Längen-Durchmesser-Verhältnisse
- ... extrem hohe Werkstückanforderungen und Lagetoleranzen
- ... Bearbeitungen mit Durchmesser > 5 mm

Bohrungstoleranz

bis

Einschneiden-Reibahlen

Einschneidenreibahle

Für größtmögliche Präzision sind Einschneidenreibahlen mit Führungsleisten nach dem MAPAL Prinzip nahezu konkurrenzlos. Ihre Scneidplatten sind mit zwei und sechs Schneidkanten erhältlich. Spezielle Anschnitte bieten dabei die Wendeschneidplatten mit zwei Schneidkanten. Maximale Wirtschaftlichkeit ist mit den HX-Schneidplatten mit sechs nutzbaren Schneidkanten garantiert.

ø-Bereich: 5,000 - 30,290 mm*

EasyAdjust-System

Easy Adjust-System

Die drastische Reduzierung des Einstellaufwandes bei Werkzeugen mit Führungsleistentechnologie war das Ziel bei der Entwicklung des Easy-Adjust-Systems. Im Mittelpunkt des Systems steht eine innovative Kassette, die die sechs- bzw. vierschneidigen Wendeschneidplatten spielfrei und stabil aufnimmt. Die Verjüngung der Nebenschneide ist bereits in die Kassette integriert, somit entfällt dieser Einstellaufwand. Durch die exakte Führung der Kassette auf einem Präzisionsführungsstift bleibt die Verjüngung auch während der Durchmessereinstellung unverändert.

Außenbearbeitungswerkzeuge

Außenbearbeitungswerkzeuge

Um das Einstellen von Außenreibahlen mit kleinen Durchmessern so einfach wie möglich zu gestalten, wird das EasyAdjust-System integriert. Dank hoher Wechselgenauigkeit sowie dem denkbar einfachen Einstellen der Schneide ist die prozesssichere Einhaltung der geforderten Toleranzen bei hochgenauen Passungen auch im kleinen Durchmesserbereich mit dem neuen System deutlich einfacher zu realisieren.

FixReam

Hochleistungsreibahle aus Vollhartmetall

Mit der neuen Hochleistungsreibahle FixReam können sowohl in Durchgangs- als auch Grundbohrungen in Titanwerkstoffen bearbeitet werden. Die patentierte Rundschlifffase sorgt für eine bis zu 30 % bessere Rundheit und Zylinderform der Bohrung. Möglich macht dies die innovative Geometrie. Damit eignet sie sich auch für den Einsatz bei geringen bis mittleren Stückzahlen.

Merkmale

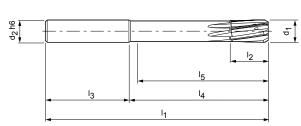
Baumaße:

- Durchgangsbohrung, linksschräg genutet
- Grundbohrung gerade genutet
- Konfigurierbare Durchmesser: ø-Bereich: 3,701 bis 20,200 mm
- Z4, Z6 und Z8
- Kurzes Design für mehr Stabilität und höhere Vorschübe
- Innere Kühlmittelzufuhr
- Hochleistungswerkzeuge für ein breites Anwendungsgebiet
- Hohe Produktivität in der Serienfertigung

Verfügbare Ausführungen

FixReam

Feste Ausführung, linksschräg genutet, für Durchgangsbohrung FXR510


Ausführung: Reibahlendurchmesser: Anschnitt:

Vollhartmetall 3,701 - 20,200 mm

MF1M Schneidstoff:

HP625 (Hartmetall PVD-beschichtet)

Konfigurierbare Merkmale

Bohrungsdurchmesser Toleranz ≥ IT6:

- Durchmesser in Abstufungen von 0.001 mm frei wählbar
- In Toleranz ≥ IT6 bestellbar

Spezifikation:

FXR510Ø[Durchmesser][Toleranz]MF1M-HP625

G-Variante:

- Durchmesser in Abstufungen von 0,001 mm frei wählbar
- Ab Toleranz ≥ 4 μm bestellbar (G-Variante)

Spezifikation G-Variante: FXR510GØ**[Durchmesser][Toleranz]**MF1M-HP625

Abmessungen konfigurierbare Baureihe IT6

d ₁	d ₂	I ₁	l ₂	l ₃	I ₄	l ₅	Z
3,701 - 4,700	6	75	12	36	39	34	4
4,701 - 6,200	6	75	12	36	39	35	4
6,201 - 7,200	8	100	16	36	64	59	6
7,201 - 8,200	8	100	16	36	64	60	6
8,201 - 9,200	10	100	20	40	60	55	6
9,201 - 10,200	10	120	20	40	80	76	6
10,201 - 11,200	12	120	20	45	75	70	6
11,201 - 12,200	12	120	20	45	75	71	6
12,201 - 14,200	14	130	22	45	85	80	6
14,201 - 15,200	16	130	22	48	82	77	6
15,201 - 16,200	16	150	25	48	102	97	6
16,201 - 18,200	18	150	25	48	102	97	8
18,201 - 20,200	20	150	25	50	100	95	8

Beispiel Toleranz IT6: FXR510Ø**16.350H6**MF1M-HP625

Bohrungsdurchmesser $d_1 = 16,350 \text{ H}6$

Beispiel G-Variante:

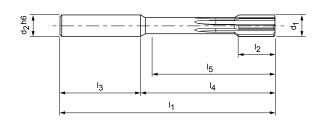
FXR510GØ**16.350-4**MF1M-HP625

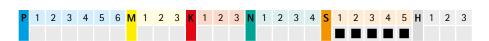
Spezieller Werkzeugdurchmesser $d_1 = 16,350 - 4 \mu m$

Zubehör

FixReam

Feste Ausführung, gerade genutet, für Grundbohrung FXR505


Ausführung: Reibahlendurchmesser: Anschnitt: Schneidstoff:


3,701 - 20,200 mm MTOA

Vollhartmetall

HP625 (Hartmetall PVD-beschichtet)

Konfigurierbare Merkmale

Bohrungsdurchmesser Toleranz ≥ IT6:

- Durchmesser in Abstufungen von 0,001 mm frei wählbar
- In Toleranz ≥ IT6 bestellbar

Spezifikation:

FXR505Ø**[Durchmesser]**[**Toleranz]**MT0A-HP625

G-Variante:

- Durchmesser in Abstufungen von 0,001 mm frei wählbar
- Ab Toleranz ≥ 4 μm bestellbar (G-Variante)

Spezifikation G-Variante: FXR505GØ**[Durchmesser][Toleranz]**MT0A-HP625

Abmessungen konfigurierbare Baureihe IT6

d ₁	d ₂	I ₁	l ₂	l ₃	I ₄	l ₅	Z
3,701 - 6,200	6	75	12	36	39	34	4
6,201 - 8,200	8	100	16	36	64	58	6
8,201 - 9,200	10	100	20	40	60	54	6
9,201 - 10,200	10	120	20	40	80	74	6
10,201 - 12,200	12	120	20	45	75	68	6
12,201 - 14,200	14	130	22	45	85	78	6
14,201 - 15,200	16	130	22	48	82	75	6
15,201 - 16,200	16	150	25	48	102	95	6
16,201 - 18,200	18	150	25	48	102	95	6
18,201 - 20,200	20	150	25	50	100	92	6

Beispiel Toleranz IT6:

FXR505Ø**16.350H6**MT0A-HP625

Bohrungsdurchmesser $d_1 = 16,350 \text{ H}6$

Beispiel G-Variante:

FXR505GØ16.350-4MT0A-HP625

Spezieller Werkzeugdurchmesser $d_1 = 16,350 - 4 \mu m$

Zubehör

HPR-Wechselkopfreibahle

Höchstmögliche Stabilität und Steifigkeit dank Kegel und Plananlage

Das HFS (Head Fitting System) ist das Herzstück der HPR-Reibahlen. Es verbindet eine sehr einfache und schnelle Handhabung mit absoluter Präzision und einer Wechselgenauigkeit von < 3µm.

1 Hochpräzise Kurzkegelverbindung

- Wechselgenauigkeit und Konzentrizität
- < 3 um
- Planflächenanlage für hohe Steifigkeit und Genauigkeit

2 HPR-Wechselkopf

- Wechselköpfe mit gelöteten Schneiden
- Vollhartmetallköpfe

3 Schneiden aus Hartmetall

- Beschichtet

4 Kühlmittelauslässe

- Direkt auf die Schneide
- Optimale Menge und Richtung des Kühlmittelstrahls

5 Differentialschraube

- Spannen und Lösen des Wechselkopfes

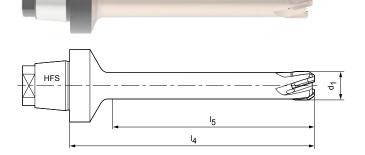
6 Schlüsselflächen

 Ausrichtung von Kopf und Halter zueinander

Merkmale

Baumaße:

- Durchgangsbohrung, linksschräg genutet
- Grundbohrung gerade genutet
- Konfigurierbare Durchmesser
 HPR 131: ø-Bereich: 7,00 bis 18,59 mm
 HPR 150: ø-Bereich: 16,60 bis 65,00 mm
- Z4 und Z6
- Kurzes Design für mehr Stabilität und höhere Vorschübe
- Innere Kühlmittelzufuhr


Verfügbare Ausführungen

HPR-Wechselkopfreibahle

Feste Ausführung, linkschräg genutet, für Durchgangsbohrung HPR131

Perfor mance

7,000 - 18,590 mm

HP625 (Hartmetall

PVD-beschichtet)

MF1G

Konfigurierbare Merkmale

Bohrungsdurchmesser Toleranz IT7:

- Durchmesser in Abstufungen von 0,001 mm frei wählbar
- In Toleranz IT7 bestellbar

Spezifikation:

HPR131Ø[Durchmesser][Toleranz]MF1G-HP625

Bohrungsdurchmesser Toleranz < IT7:

 Toleranzen kleiner IT7 als spezieller Werkzeugdurchmesser bestellbar (G-Variante)

Spezifikation G-Variante:

HPR131GØ[Durchmesser][Toleranz]MF1G-HP625

Abmessungen konfigurierbare Baureihe IT7

d ₁	14	I ₅	HFS-Größe	Z
7,000 - 9,590	60	45	12	4
9,600 - 18,590	60	45	12	6

Ausführung:

Anschnitt:

Schneidstoff:

Reibahlendurchmesser:

Beispiel Toleranz IT7:

HPR131Ø**16.350H7**MF1G-HP625

Bohrungsdurchmesser $d_1 = 16,350 \text{ H}7$

Beispiel G-Variante:

HPR131GØ**16.350-5**MF1G-HP625

Spezieller Werkzeugdurchmesser $d_1 = 16,350 - 5 \mu m$

Toleranzen für die G-Variante

Schneidstoff	Durchmesserbereich		
Schneidston	Ø7 - <Ø60	≥Ø60 - Ø65	
Beschichtet (Schichtdicke 2–3 μm)	-0.005	-0.008	
HP625	3,300	3,300	

Zubehör

HFS101SN-		HFS-Wechselkopfhalter	Seite 103
	MHC	HydroChuck	Seite 88

HPR-Wechselkopfreibahle

Feste Ausführung, linksschräg genutet, für Durchgangsbohrung

HPR110

Ausführung:

Reibahlendurchmesser: 15,600 - 65,000 mm

Anschnitt: MF1G

Schneidstoff: HP625 (Hartmetall PVD-beschichtet)

Konfigurierbare Merkmale

Bohrungsdurchmesser Toleranz IT6/IT7:

1 2 3 N

- Durchmesser in Abstufungen von
- 0,001 mm frei wählbar
- Abhängig vom Durchmesserbereich ab Toleranz IT6/IT7 bestellbar
- ≥ Ø30,000 IT6 | ≤ Ø30,000 IT7

Spezifikation:

HPR110Ø[Durchmesser][Toleranz]MF1G-HP625

Bohrungsdurchmesser Toleranz < IT6/IT7:

 Toleranzen kleiner IT6/IT7 als spezieller Werkzeugdurchmesser bestellbar (G-Variante)

Spezifikation G-Variante:

 $\dot{\mathsf{HPR}} 110\mathsf{G} \emptyset \textbf{[Durchmesser]} \textbf{[Toleranz]} \mathsf{MF} 1\mathsf{G-HP} 625$

Abmessungen konfigurierbare Baureihe

1 2 3 4 <mark>S</mark> 1 2 3 4 5 **H** 1 2 3

d1	l ₄	l ₅	HFS-Größe	Z	Toleranz
15,600 - 18,590	14	-	10	6	IT7
18,600 - 21,290	14,5	_	12	6	IT7
21,300 - 23,990	15,5	-	14	6	IT7
24,000 - 29,990	16	-	16	6	IT7
30,000 - 39,990	17	-	20	8	IT6
40,000 - 50,700	19	-	24	8	IT6
50,710 - 65,000	25	-	24	8	IT6

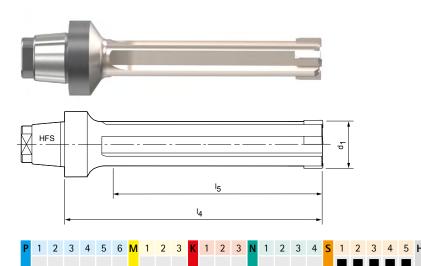
Beispiel Toleranz IT6/IT7: HPR110Ø16.350H7MF1G-HP625

Bohrungsdurchmesser $d_1 = 16,350 \text{ H}7$

Toleranzen für die G-Variante

Schneidstoff	Durchmesserbereich		
Schneidston	Ø7 - <Ø60	≥Ø60 - Ø65	
Beschichtet (Schichtdicke 2-3 μm)	-0,005	-0,008	
HP625	-0,005	-0,008	

Beispiel G-Variante:


HPR110GØ**16.350-5**MF1G-HP625

Spezieller Werkzeugdurchmesser $d_1 = 16,350 - 5 \mu m$

HFS101SN-		HFS-Wechselkopfhalter	Seite 103
	MHC	HydroChuck	Seite 88

HPR-Wechselkopfreibahle

Feste Ausführung, gerade genutet, für Grundbohrung HPR180

Ausführung:

Reibahlendurchmesser: 7,000 - 21,290 mm

Anschnitt: M02G

Schneidstoff: HP625 (Hartmetall PVD-beschichtet)

Konfigurierbare Merkmale

Bohrungsdurchmesser Toleranz IT7:

- Durchmesser in Abstufungen von 0,001 mm frei wählbar
- Ab Toleranz IT7 bestellbar

Spezifikation:

HPR180Ø[Durchmesser][Toleranz]M02G-HP625

Bohrungsdurchmesser Toleranz < IT7:

 Toleranzen kleiner IT7 als spezieller Werkzeugdurchmesser bestellbar (G-Variante)

Spezifikation G-Variante:

HPR180GØ[Durchmesser][Toleranz]M02G-HP625

Abmessungen konfiguriebare Baureihe IT7

d1	l ₄	l ₅	HFS-Größe	Z
7,000 - 14,590	60	40	12	4
14,600 - 21,290	60	40	12	6

Beispiel Toleranz IT7:

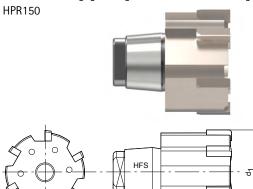
HPR180Ø**16.350H7**M02G-HP625

Bohrungsdurchmesser $d_1 = 16,350 \text{ H}7$

Beispiel G-Variante:

HPR180GØ**16.350-5**M02G-HP625

Spezieller Werkzeugdurchmesser $d_1 = 16,350 - 5 \mu m$


Toleranzen für die G-Variante

Schneidstoff	Durchmesserbereich		
Schneidston	Ø7 - <Ø60	≥Ø60 - Ø65	
Beschichtet (Schichtdicke 2-3 μm)	-0.005	-0.008	
HP625	-0,005	-0,008	

 HFS101SN-	HFS-Wechselkopfhalter	Seite 103
MHC	HydroChuck	Seite 88

HPR-Wechselkopfreibahle

Feste Ausführung, gerade genutet, für Grundbohrung

Ausführung:

16,600 - 65,000 mm Reibahlendurchmesser:

Anschnitt: M02G

HP625 (Hartmetall Schneidstoff:

1 2 3 4 <mark>S</mark> 1 2 3 4 5 **H** 1 2 3 1 2 3

14

Konfigurierbare Merkmale

Bohrungsdurchmesser Toleranz IT6/IT7:

- Durchmesser in Abstufungen von
- 0,001 mm frei wählbar
- Abhängig vom Durchmesserbereich ab Toleranz IT6/IT7 bestellbar
- ≥ Ø30,000 IT6 | ≤ Ø30,000 IT7

Spezifikation:

HPR150Ø[Durchmesser][Toleranz]M02G-HP625

Bohrungsdurchmesser Toleranz < IT6/IT7:

- Toleranzen kleiner IT6/IT7 als spezieller Werkzeugdurchmesser bestellbar (G-Variante)

Spezifikation G-Variante:

HPR150GØ[Durchmesser][Toleranz]M02G-HP625

Abmessungen konfiguriebare Baureihe IT6/IT7

d1	14	l ₅	HFS-Größe	Z	Toleranz
16,600 - 21,290	14	-	10	6	IT7
21,300 - 24,990	15,5	-	12	6	IT7
25,000 - 28,990	15,5	-	14	6	IT7
29,000 - 29,990	17	-	16	6	IT7
30,000 - 36,990	17	-	16	6	IT6
37,000 - 44,990	17	-	20	8	IT6
45,000 - 50,700	19	-	24	8	IT6
50,710 - 65,000	25	-	24	8	IT6

Beispiel Toleranz IT6/IT7: HPR150Ø**37.350H7**M02G-HP625

Bohrungsdurchmesser d₁= 37,350 H7

Toleranzen für die G-Variante

Schneidstoff	Durchmesserbereich		
Schneidston	Ø7 - <Ø60	≥Ø60 - Ø65	
Beschichtet (Schichtdicke 2-3 μm)	-0.005	-0.008	
HP625	-0,003	-0,000	

Beispiel G-Variante:

HPR150GØ37.350-5M02G-HP625

Spezieller Werkzeugdurchmesser d_1 = 37,350 -5 μ m

HFS111SN-	HFS-Wechselkopfhalter	Seite 103
MHC	HydroChuck	Seite 88

Schnittwertempfehlung für FXR und HPR

Vorschub und Schnittgeschwindigkeit

FXR510 | FXR505

Schneidstoff: HP625 | Anschnitt: MF1M | MT0A

MZG*		ZG*	Werkstoff	Festigkeit/Härte	Schnitt			
				[N/mm ²] [HRC]	Innenkühlung	Außenkühlung	MMS	
	S1	S1.1	Titan, Titanlegierungen	< 400	25	10	15	
	52	S2.1	Titan, Titanlegierungen	< 1.200	25	10	15	
	32	S2.2	Titan, Titanlegierungen	> 1.200	25	10	15	
S	S3	S3.1	Nickel, unlegiert und legiert	< 900	25	10	15	
	33	S3.2	Nickel, unlegiert und legiert	> 900	25	10	15	
	S4	S4.1	Hochwarmfeste Superlegierung, Ni-, Co-, und Fe-basiert		25	10	15	
	S5	S5.1	Wolfram- und Molybdänlegierungen		25	10	15	

HPR180 | HPR131

Schneidstoff: HP625 | Anschnitt: MO2G | MF1G

MZG*		ZG*	Werkstoff	Festigkeit/Härte	Schnittgeschwindigkeit v _c (m/min)			
				[N/mm ²] [HRC]	Innenkühlung	Außenkühlung	MMS	
	S1	S1.1	Titan, Titanlegierungen	< 400	35	20	25	
	Ca	S2.1	Titan, Titanlegierungen	< 1.200	35	20	25	
	32	S2.2	Titan, Titanlegierungen	> 1.200	35	20	25	
	S C	S3.1	Nickel, unlegiert und legiert	< 900	30	15	25	
	33	S3.2	Nickel, unlegiert und legiert	> 900	30	15	25	
	S4	S4.1	Hochwarmfeste Superlegierung, Ni-, Co-, und Fe-basiert		25	15	20	
	S5	S5.1	Wolfram- und Molybdänlegierungen		25	15	20	

HPR110 | HPR150

Schneidstoff: HP625 | Anschnitt: MO2G | MF1G

MZG*		ZG*	Werkstoff	Festigkeit/Härte	Schnittgeschwindigkeit v_c (m/min)			
				[N/mm ²] [HRC]	Innenkühlung	Außenkühlung	MMS	
	S1	S1.1	Titan, Titanlegierungen	< 400	35	20	25	
	52	S2.1	Titan, Titanlegierungen	< 1.200	35	20	25	
	32	S2.2	Titan, Titanlegierungen	> 1.200	35	20	25	
S	S 3	S3.1	Nickel, unlegiert und legiert	< 900	30	15	25	
	33	S3.2	Nickel, unlegiert und legiert	> 900	30	15	25	
	S 4	S4.1	Hochwarmfeste Superlegierung, Ni-, Co-, und Fe-basiert		25	15	20	
	S5	S5.1	Wolfram- und Molybdänlegierungen		25	15	20	

Vorschub f _z (mm/z) bei Werkzeugdurchmesser													
z 4	z 4	z 6	z 6	z 6	z 6	z 8							
< 5,000	> 5,000 - 6,200	> 6,200 - 8,000	> 8,000 - 12,000	> 12,000 - 16,000	> 16,000 - 16,200	> 16,200 - 20,200							
0,020	0,040	0,060	0,080	0,100	0,100	0,100							
0,020	0,040	0,060	0,080	0,100	0,100	0,100							
0,020	0,040	0,060	0,080	0,100	0,100	0,100							
0,020	0,040	0,060	0,080	0,100	0,100	0,100							
0,020	0,040	0,060	0,080	0,100	0,100	0,100							
0,020	0,040	0,060	0,080	0,100	0,100	0,100							
0,020	0,040	0,060	0,080	0,100	0,100	0,100							

Vorschub f _z (mm/z) bei	bei Werkzeugdurchmesser								
z 4	z 6								
HPR180 - ø 7,000 - 14,590 HPR131 - ø 7,000 - 9,590	HPR180 - ø 14,600 - 21,290	HPR131 – ø 9,600 – 18,590							
0,060	0,080	0,100							
0,060	0,080	0,100							
0,060	0,080	0,100							
0,060	0,080	0,100							
0,060	0,080	0,100							
0,060	0,080	0,100							
0,060	0,080	0,100							

	Vorschub f _z (mm/z) bei	Werkzeugdurchmesser			
Z	6	Z	8		
HPR110 – ø 16,600 – 29,990	HPR150 – ø 16,600 - 36,990	HPR110 – ø 30,000 - 65,000	HPR150 – ø 37,000 – 65,000		
0,100	0,080	0,100	0,080		
0,100	0,080	0,100	0,080		
0,100	0,080	0,100	0,080		
0,100	0,080	0,100	0,080		
0,100	0,080	0,100	0,080		
0,100	0,080	0,100	0,080		
0,100	0,080	0,100	0,080		

SPANNEN

Spannen

Hydrodehnspanntechnik	
UNIQ Chuck: Industriedesign mit Mehrwert	
UNIQ Mill Chuck, HA	
UNIQ DReaM Chuck	
HydroChuck	
Mechanische Werkzeugspanntechnik	
MillChuck, HB	
Aufsteckfräserdorne	
MFS-Fräskopfhalter	
HFS-Wechselkopfhalter	
Adapter	
Ersatzteile und Zubehör	
Technischer Anhang	
Bezeichnungsschlüssel	
Anwendungshinweise	

INDUSTRIEDESIGN MIT MEHRWERT – UNIQ® CHUCK

Das neu entwickelte Hydrodehn-Spannsystem ermöglicht hohe Bearbeitungsparameter durch hervorragende Stabilität und Genauigkeit. Es minimiert selbsterregte Schwingungen wodurch eingespannte Werkzeuge keinen Mikroschwingungen ausgesetzt werden. Das wiederum führt zu einer reduzierten Spindellast um bis zu fünf Prozent, ermöglicht eine deutlich längere Werkzeugstandzeit und garantiert optimale Oberflächengüten.

Zusätzlich sorgt die brillante Oberfläche, die MAPAL durch ein speziell entwickeltes Polierverfahren erzeugt, dafür, dass die Spannfutter schmutz- und korrosionsbeständiger sind als bisherige Spannfutter. Anwender können das Werkzeug prozesssicher in der Aufnahme mit geringem Kraftaufwand spannen. Dafür sorgt das "Foolproof-Handling", also eine einfache und selbsterklärende Handhabung der Spannfutter. Insbesondere beim UNIQ DReaM Chuck, 4.5° bedeutet dies eine erhebliche Zeitersparnis gegenüber anderen Spannmechanismen.

Design-Features im Detail

Formensprache

FEM-unterstützte Konturen für maximale Steifgkeit bei minimalem Ressourceneinsatz

Blaue Betätigungsschraube

- Optisches Bedienelement Fool Proof
- Reduzierte Fehler- und Unfallgefahr

Polierte Oberfläche

Maximale Korrosions- und Schmutzbeständigkeit

Reduziertes Anzugsmoment

- Geringere Nebenzeiten
- Ergonomisches Handling

Signaturelemente

Informationen zu Funktion und Produkt

Formensprache | Bionische Konturen

- Höhere Stabilität und Genauigkeit des Gesamt-
- Geringere Abdrängung des Werkzeuges
- Weniger Gewicht durch minimalen Ressourceneinsatz
- Gutes Handling beim Rüsten des Werkzeugmagazins
- Selbsterregte Schwingungen werden minimiert

Polierte Oberflächen

- Schmutzbeständigkeit (Korrosionsbeständigkeit) erhöht
- Höchste Wuchtgüten durch verdichtete Ober-

Blaue Betätigungsschraube | Signaturelemente

- Eindeutige Zuordnung der Betätigungsschraube und leichtere Betätigung des bis zu 70 % reduziertes Anzugsmoment
- Übersichtlichkeit am Produkt, wichtige Funktionsund Produktinformationen sofort ersichtlich

UNIQ® Mill Chuck, HA

Zuverlässig. Dynamisch. Agil.

Das UNIQ Mill Chuck ist speziell für das Spannen von Fräswerkzeugen mit HA-Schaft ausgelegt. Durch die hohe Temperaturfestigkeit von 80 °C auch bei sehr langen Fräszyklen überzeugt es bei hochdynamischen Fräsanwendungen, wie SPM (Structural Part Machining), HSC (High Speed Cutting) oder HPC (High Performance Cutting), von hochwertigen Bauteilen mit einer ausgezeichneten Prozesssicherheit und hohem Zeitspanvolumen. Es ist universell für Schrupp-, Semi- und Schlichtoperationen ausgelegt.

Hydrodehnspannfutter

- Für hochdynamische Fräsanwendungen

Ausgezeichnete Ergebnisse

 Bei Verwendung von Werkzeugen mit HA-Schaft

Hohe Temperaturbeständigkeit

 80°C auch bei sehr langen Fräszyklen (über 240 Minuten)

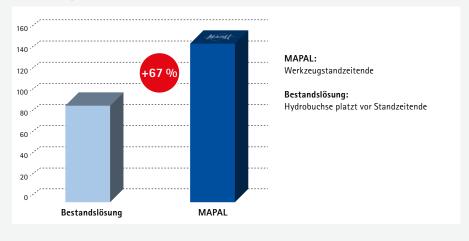
Für Hochleistungsfräsbearbeitungen

- Bis max. 33.000 Umdrehungen pro Minute

Höchste Prozesssicherheit

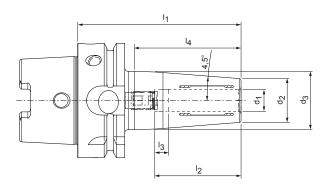
- Auch bei hochwertigen Bauteilen

Merkmale


Trennstellen:

- HSK-A063
- HSK-A100
- BT30

Aufnahmedurchmesser:


- 6,0 mm bis 20,00 mm

Standweg [m]

UNIQ® Mill Chuck, HA

Mit axialer Werkzeuglängeneinstellung Schaft HSK-A nach DIN 69893-1

LICK A				Baumaße				G	Drehmoment*	Spezifikation	Bestell-Nr.
HSK-A	d ₁	d ₂	d ₃	I ₁	l ₂	l ₃	I ₄		[Nm]		
63	6,0	26,0	50,0	65,0	37,0	10,0	35,2	M5	22	MHC-HSK-A063-06-065-1-0-A	31270591
63	8,0	28,0	50,0	65,0	37,0	10,0	35,2	M6	47	MHC-HSK-A063-08-065-1-0-A	31270593
63	10,0	30,0	50,0	75,0	41,0	10,0	45,2	M8x1	85	MHC-HSK-A063-10-075-1-0-A	31270595
63	12,0	32,0	52,5	75,0	46,0	10,0	45,2	M8x1	130	MHC-HSK-A063-12-075-1-0-A	31229418
63	16,0	38,0	52,5	79,0	49,0	10,0	49,2	M8x1	350	MHC-HSK-A063-16-079-1-0-A	31270598
63	20,0	38,0	52,5	79,0	51,0	10,0	49,2	M8x1	520	MHC-HSK-A063-20-079-1-0-A	31229438
100	6,0	26,0	50,0	73,0	37,0	10,0	40,3	M5	22	MHC-HSK-A100-06-073-1-0-A	31345192
100	8,0	28,0	50,0	73,0	37,0	10,0	40,3	M6	47	MHC-HSK-A100-08-073-1-0-A	31345193
100	10,0	30,0	50,0	83,0	41,0	10,0	50,3	M8x1	85	MHC-HSK-A100-10-083-1-0-A	31345194
100	12,0	32,0	52,5	83,0	46,0	10,0	50,3	M8x1	130	MHC-HSK-A100-12-083-1-0-A	31345195
100	16,0	38,0	52,5	87,0	49,0	10,0	54,3	M8x1	350	MHC-HSK-A100-16-087-1-0-A	31345197
100	20,0	38,0	52,5	87,0	51,0	10,0	54,3	M8x1	520	MHC-HSK-A100-20-087-1-0-A	31345199

 $^{^{\}star}$ Zulässiges übertragbares Drehmoment.

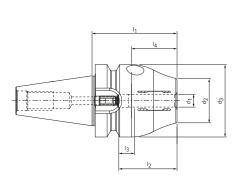
Maßangaben in mm.

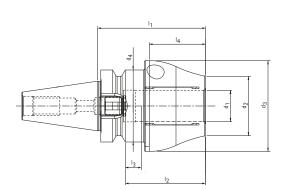
Weitere Abmessungen auf Anfrage erhältlich.

Verwendung: Zum Spannen von Werkzeugen mit glatten Zylinderschäften nach DIN 1835 Form A, DIN 6535 Form HA sowie mit Ausnehmungen nach DIN 1835 Form B, E und DIN 6535 Form HB, HE direkt und mit Reduzierhülse im Spanndurchmesser. Der Spanndurchmesser ist für eine Schafttoleranz h6 ausgelegt.

Lieferumfang: Mit Längeneinstellschraube, ohne Kühlmittelrohr.

Ausführung: Höchste Werkzeugstandzeiten und Fertigungsqualitäten bei Einsatz von glatten Zylinderschäften nach DIN 1835 Form A und DIN 6535 Form HA. Bei einer Auskraglänge von 2,5xD (max. 50 mm) Rundlaufgenauigkeit 3 µm. Bei Einsatz von Zylinderschäf-


ten mit geneigter Spannfläche (Form E und Form HE) ist eine Beeinträchtigung der Genauigkeit möglich. Drehmomentübertragung perfekt auf die jeweilige Anwendung zugeschnitten.


Hinweis: Kühlmittelzufuhr über zentrale Durchgangsbohrung. Kühlmittelrohre, Codeträger, Reduzierhülsen zur Reduzierung des Spanndurchmessers (bei Verwendung der Reduzierhülse ist eine Beeinträchtigung der Genauigkeit möglich) siehe Katalog "SPANNEN". Längeneinstellschrauben auf Anfrage erhältlich.

Wuchtgüte: G 2,5 bei 25.000 min⁻¹ im Auslieferungszustand.

UNIQ® Mill Chuck, HA

Mit axialer Werkzeuglängeneinstellung Schaft BT nach ISO 7388-2 Form JD/JF (JIS B 6339)

BT				Baur	maße				G Drehmoment*		Spezifikation	Bestell-Nr.
DI	d ₁	d ₂	d_3	d ₄	l ₁	l ₂	l ₃	l ₄		[INITI]		
30**	6,0	26,0	46,0	-	54,0	37,0	10,0	29,0	M5	22	MHC-BT030-06-054-1-0-A	31280342
30**	8,0	28,0	46,0	-	54,0	37,0	10,0	29,0	M6	47	MHC-BT030-08-054-1-0-A	31280343
30**	10,0	30,0	50,0	46,0	54,0	41,0	10,0	23,5	M8x1	85	MHC-BT030-10-054-1-0-A	31280344
30**	12,0	32,0	50,0	46,0	54,0	46,0	10,0	23,5	M10x1	130	MHC-BT030-12-054-1-0-A	31280345
30**	16,0	38,0	55,0	46,0	69,0	49,0	10,0	38,5	M12x1	350	MHC-BT030-16-069-1-0-A	31280346
30**	20,0	38,0	58,0	46,0	69,0	51,0	10,0	38,5	M12x1	520	MHC-BT030-20-069-1-0-A	31280347

^{*} Zulässiges übertragbares Drehmoment.

Maßangaben in mm.

Weitere Abmessungen auf Anfrage erhältlich.

Verwendung: Zum Spannen von Werkzeugen mit glatten Zylinderschäften nach DIN 1835 Form A, DIN 6535 Form HA sowie mit Ausnehmungen nach DIN 1835 Form B, E und DIN 6535 Form HB, HE direkt und mit Reduzierhülse im Spanndurchmesser. Der Spanndurchmesser ist für eine Schafttoleranz h6 ausgelegt.

Lieferumfang: Mit Längeneinstellschraube, ohne Anzugsbolzen.

Ausführung: Höchste Werkzeugstandzeiten und Fertigungsqualitäten bei Einsatz von glatten Zylinderschäften nach DIN 1835 Form A und DIN 6535 Form HA. Bei einer Auskraglänge von 2,5xD (max. 50 mm) Rundlaufgenauigkeit 3 µm. Bei Einsatz von Zylinderschäf-

ten mit geneigter Spannfläche (Form E und Form HE) ist eine Beeinträchtigung der Genauigkeit möglich. Drehmomentübertragung perfekt auf die jeweilige Anwendung zugeschnitten.

Hinweis: Kühlmittelzufuhr über zentrale Durchgangsbohrung. Anzugsbolzen, Reduzierhülsen zur Reduzierung des Spanndurchmessers (bei Verwendung der Reduzierhülse ist eine Beeinträchtigung der Genauigkeit möglich) siehe Katalog "SPANNEN".

Längeneinstellschrauben auf Anfrage erhältlich. Wuchtgüte: G 2,5 bei 25.000 min⁻¹ im Auslieferungszustand.

^{**} Ausführung: Steilkegelgröße ist nicht in Kombi-Ausführung JD/JF erhältlich.

UNIQ® DReaM Chuck

Hohe Bearbeitungsparameter durch Stabilität und Genauigkeit

Das UNIQ DReaM Chuck, 4.5° ist für Reib- und Bohranwendungen sowie zum Einsatz mit Schlichtfräsern optimiert. Es ermöglicht mit minimaler Störkontur durch die Spanneinleitung im HSK-Bund maximale Steifigkeit bei geringem Materialeinsatz. Die Außenkontur des UNIQ DReaM Chucks ist eins zu eins an die DIN 69882-8 für Warmschrumpffutter angelehnt. Dadurch sind die Vorteile der Hydrodehnspanntechnik auf diese Anwendungen übertragbar.

Hydrodehnspannfutter

 Für Reib- und Bohranwendungen sowie zum Schlichten bei Fräsoperationen

Anwendungsorientiere Systemauslegung

 Mit den originalen Abmessungen eines Schrumpffutters (DIN-Kontur mit 4,5°)

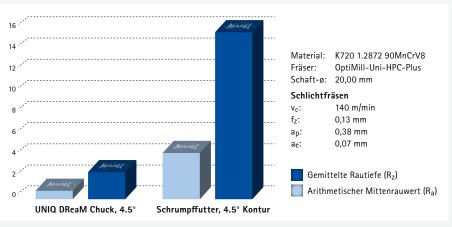
Herausragende Oberflächen

- Bei gleichzeitig verbessertem Handling

Maximale Flexibilität und Produktivität

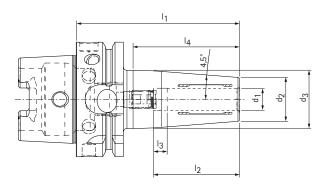
 Bei der Bearbeitung von konturkritischen Bauteilen

Merkmale


Trennstellen:

- HSK-A063
- HSK-A100
- BT30

Aufnahmedurchmesser:


- 6,0 mm bis 20,00 mm

Oberflächengüte [µm]

UNIQ® DReaM Chuck, 4.5°

Mit axialer Werkzeuglängeneinstellung, Spanneinleitung im Bund Schaft HSK-A nach DIN 69893-1

LICK A				Baumaße				G	Drehmoment*	Spezifikation	Bestell-Nr.
HSK-A	d ₁	d ₂	d ₃	I ₁	l ₂	l ₃	I ₄		[Nm]		
63	6,0	21,0	27,0	80,0	37,0	10,0	48,9	M5	18	MHC-HSK-A063-06-080-1-0-A	31270515
63	8,0	21,0	27,0	80,0	37,0	10,0	48,9	M6	35	MHC-HSK-A063-08-080-1-0-A	31270525
63	10,0	24,0	32,0	85,0	41,0	10,0	53,7	M8x1	60	MHC-HSK-A063-10-085-1-0-A	31270550
63	12,0	24,0	32,0	90,0	46,0	10,0	58,6	M10x1	90	MHC-HSK-A063-12-090-1-0-A	31229439
63	16,0	27,0	34,0	95,0	49,0	10,0	63,1	M12x1	200	MHC-HSK-A063-16-095-1-0-A	31270555
63	20,0	33,0	42,0	100,0	51,0	10,0	68,9	M16x1	330	MHC-HSK-A063-20-100-1-0-A	31229440
100	6,0	21,0	27,0	85,0	37,0	10,0	38,7	M5	18	MHC-HSK-A100-06-085-1-0-A	31344789
100	8,0	21,0	27,0	85,0	37,0	10,0	38,7	M6	35	MHC-HSK-A100-08-085-1-0-A	31344860
100	10,0	24,0	32,0	90,0	41,0	10,0	53,8	M8x1	60	MHC-HSK-A100-10-090-1-0-A	31344862
100	12,0	24,0	32,0	95,0	46,0	10,0	58,7	M10x1	90	MHC-HSK-A100-12-095-1-0-A	31344863
100	16,0	27,0	34,0	100,0	49,0	10,0	63,1	M12x1	200	MHC-HSK-A100-16-100-1-0-A	31344865
100	20,0	33,0	42,0	105,0	51,0	10,0	69,0	M16x1	330	MHC-HSK-A100-20-105-1-0-A	31344867

 $^{^{\}star}$ Zulässiges übertragbares Drehmoment.

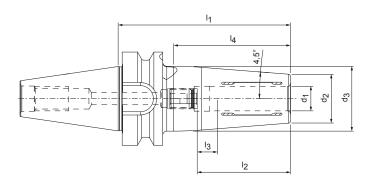
Maßangaben in mm.

Weitere Abmessungen auf Anfrage erhältlich.

Verwendung: Zum Spannen von Werkzeugen mit glatten Zylinderschäften nach DIN 1835 Form A, DIN 6535 Form HA sowie mit Ausnehmungen nach DIN 1835 Form B, E und DIN 6535 Form HB, HE direkt und mit Reduzierhülse im Spanndurchmesser. Der Spanndurchmesser ist für eine Schafttoleranz h6 ausgelegt.

Lieferumfang: Mit Längeneinstellschraube, ohne Kühlmittelrohr.

Ausführung: Höchste Werkzeugstandzeiten und Fertigungsqualitäten bei Einsatz von glatten Zylinderschäften nach DIN 1835 Form A und DIN 6535 Form HA. Bei einer Auskraglänge von 2,5xD (max. 50 mm) Rundlaufgenauigkeit 3 µm. Bei Einsatz von Zylinderschäf-


ten mit geneigter Spannfläche (Form E und Form HE) ist eine Beeinträchtigung der Genauigkeit möglich. Drehmomentübertragung perfekt auf die jeweilige Anwendung zugeschnitten.

Hinweis: Kühlmittelzufuhr über zentrale Durchgangsbohrung. Kühlmittelrohre, Codeträger, Reduzierhülsen zur Reduzierung des Spanndurchmessers (bei Verwendung der Reduzierhülse ist eine Beeinträchtigung der Genauigkeit möglich) siehe Katalog "SPANNEN". Längeneinstellschrauben auf Anfrage erhältlich.

Wuchtgüte: G 2,5 bei 25.000 min⁻¹ im Auslieferungszustand.

UNIQ® DReaM Chuck, 4.5°

Mit axialer Werkzeuglängeneinstellung, Spanneinleitung im Bund Schaft BT nach ISO 7388-2 Form JD/JF (JIS B 6339)

BT				Baumaße				G Drehmoment* [Nm]		Spezifikation	Bestell-Nr.
DI	d ₁	d_2	d ₃	l ₁	l ₂	l ₃	I ₄		[INTT]		
30**	6,0	21,0	27,0	85,0	37,0	10,0	57,7	M5	18	MHC-BT030-06-085-1-0-A	31280360
30**	8,0	21,0	27,0	85,0	37,0	10,0	57,7	M6	35	MHC-BT030-08-085-1-0-A	31280361
30**	10,0	24,0	32,0	85,0	41,0	10,0	57,7	M8x1	60	MHC-BT030-10-085-1-0-A	31280362
30**	12,0	24,0	32,0	85,0	46,0	10,0	57,7	M10x1	90	MHC-BT030-12-085-1-0-A	31280365
30**	16,0	27,0	34,0	85,0	49,0	10,0	57,2	M10x1	200	MHC-BT030-16-085-1-0-A	31280366
30**	20,0	33,0	42,0	85,0	51,0	10,0	57,5	M10x1	330	MHC-BT030-20-085-1-0-A	31280367

^{*} Zulässiges übertragbares Drehmoment.

Maßangaben in mm.

Weitere Abmessungen auf Anfrage erhältlich.

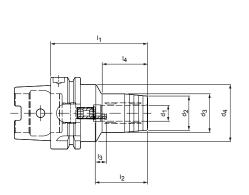
Verwendung: Zum Spannen von Werkzeugen mit glatten Zylinderschäften nach DIN 1835 Form A, DIN 6535 Form HA sowie mit Ausnehmungen nach DIN 1835 Form B, E und DIN 6535 Form HB, HE direkt und mit Reduzierhülse im Spanndurchmesser. Der Spanndurchmesser ist für eine Schafttoleranz h6 ausgelegt.

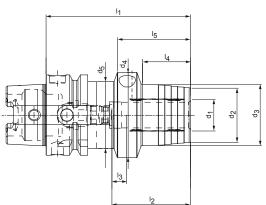
 $Lie ferum fang: Mit\ L\"{a}ngene instellschraube,\ ohne\ Anzugsbolzen.$

Ausführung: Höchste Werkzeugstandzeiten und Fertigungsqualitäten bei Einsatz von glatten Zylinderschäften nach DIN 1835 Form A und DIN 6535 Form HA. Bei einer Auskraglänge von 2,5xD (max. 50 mm) Rundlaufgenauigkeit 3 µm. Bei Einsatz von Zylinderschäf-

ten mit geneigter Spannfläche (Form E und Form HE) ist eine Beeinträchtigung der Genauigkeit möglich. Drehmomentübertragung perfekt auf die jeweilige Anwendung zugeschnitten.

Hinweis: Kühlmittelzufuhr über zentrale Durchgangsbohrung. Anzugsbolzen, Reduzierhülsen zur Reduzierung des Spanndurchmessers (bei Verwendung der Reduzierhülse ist eine Beeinträchtigung der Genauigkeit möglich) siehe Katalog "SPANNEN".


Längeneinstellschrauben auf Anfrage erhältlich.


Wuchtgüte: G 2,5 bei 25.000 min⁻¹ im Auslieferungszustand.

^{**} Ausführung: Steilkegelgröße ist nicht in Kombi-Ausführung JD/JF erhaltlich

HydroChuck

Nach DIN 69882-7 mit axialer Werkzeuglängeneinstellung Schaft HSK-A nach DIN 69893-1

HSK-A	Ваитаßе										G	Spezifikation	Bestell-Nr.
	d ₁	d ₂	d ₃	d ₄	d ₅	I ₁	l ₂	l ₃	I ₄	I ₅			
32	6,0	22,0	26,0	40,0	-	80,0	37,0	10,0	29,0	-	M5	MHC-HSK-A032-06-080-1-0-A	30250998
32	8,0	24,0	28,0	40,0	-	80,0	37,0	10,0	29,0	-	M6	MHC-HSK-A032-08-080-1-0-A	30250999
32	10,0	26,0	30,0	40,0	-	85,0	41,0	10,0	35,0	-	M6	MHC-HSK-A032-10-085-1-0-A	30251000
32	12,0	28,0	32,0	40,0	-	90,0	46,0	10,0	40,0	-	M6	MHC-HSK-A032-12-090-1-0-A	30251001
40	6,0	22,0	26,0	33,5	-	70,0	37,0	10,0	36,0	-	M5	MHC-HSK-A040-06-070-1-0-A	30251002
40	8,0	24,0	28,0	33,5	-	70,0	37,0	10,0	36,0	-	M6	MHC-HSK-A040-08-070-1-0-A	30251003
40	10,0	26,0	30,0	33,5	-	75,0	41,0	10,0	42,0	-	M6	MHC-HSK-A040-10-075-1-0-A	30251004
40	12,0	28,0	32,0	33,5	-	80,0	46,0	10,0	48,0	-	M6	MHC-HSK-A040-12-080-1-0-A	30251005
50	6,0	22,0	26,0	40,0	-	70,0	37,0	10,0	28,0	-	M5	MHC-HSK-A050-06-070-1-0-A	30251006
50	8,0	24,0	28,0	40,0	-	70,0	37,0	10,0	28,0	-	M6	MHC-HSK-A050-08-070-1-0-A	30251007
50	10,0	26,0	30,0	40,0	-	75,0	41,0	10,0	34,0	-	M8x1	MHC-HSK-A050-10-075-1-0-A	30251008
50	12,0	28,0	32,0	40,0	-	85,0	46,0	10,0	44,0	-	M10x1	MHC-HSK-A050-12-085-1-0-A	30251009
50	14,0	30,0	34,0	40,0	-	85,0	46,0	10,0	44,0	-	M10x1	MHC-HSK-A050-14-085-1-0-A	30251010
50	16,0	34,0	38,0	53,0	41,5	90,0	49,0	10,0	30,0	45,5	M12x1	MHC-HSK-A050-16-090-1-0-A	30251011
50	18,0	36,0	40,0	53,0	41,5	90,0	49,0	10,0	30,0	45,5	M12x1	MHC-HSK-A050-18-090-1-0-A	30251012
50	20,0	38,0	42,0	57,0	41,5	90,0	51,0	10,0	29,0	45,5	M16x1	MHC-HSK-A050-20-090-1-0-A	30251013
63	6,0	22,0	26,0	50,0	-	70,0	37,0	10,0	24,0	-	M5	MHC-HSK-A063-06-070-1-0-A	30251014
63	6,0	22,0	26,0	50,0	-	120,0	37,0	10,0	73,0	-	M5	MHC-HSK-A063-06-120-1-0-A	30273801
63	6,0	22,0	26,0	50,0		150,0	37,0	10,0	103,0	-	M5	MHC-HSK-A063-06-150-1-0-A	30251144
63	6,0	22,0	26,0	50,0		200,0	37,0	10,0	153,0	-	M5	MHC-HSK-A063-06-200-1-0-A	30251152
63	8,0	24,0	28,0	50,0	-	70,0	37,0	10,0	25,0	-	M6	MHC-HSK-A063-08-070-1-0-A	30251015
63	8,0	24,0	28,0	50,0	-	120,0	37,0	10,0	74,0	-	M6	MHC-HSK-A063-08-120-1-0-A	30273802
63	8,0	24,0	28,0	50,0	-	150,0	37,0	10,0	104,0	-	M6	MHC-HSK-A063-08-150-1-0-A	30251145
63	0,8	24,0	28,0	50,0	_	200,0	37,0	10,0	154,0	-	M6	MHC-HSK-A063-08-200-1-0-A	30251153
63	10,0	26,0	30,0	50,0	_	80,0	41,0	10,0	35,0	-	M8x1	MHC-HSK-A063-10-080-1-0-A	30251016
63	10,0	26,0	30,0	50,0		120,0	41,0	10,0	74,0	-	M8x1	MHC-HSK-A063-10-120-1-0-A	30273803
63	10,0	26,0	30,0	50,0	-	150,0	41,0	10,0	104,0	-	M8x1	MHC-HSK-A063-10-150-1-0-A	30251146
63	10,0	26,0	30,0	50,0	-	200,0	41,0	10,0	154,0	-	M8x1	MHC-HSK-A063-10-200-1-0-A	30251154
63	12,0	28,0	32,0	50,0	-	85,0	46,0	10,0	40,0	-	M10x1	MHC-HSK-A063-12-085-1-0-A	30251017
63	12,0	28,0	32,0	50,0	-	120,0	46,0	10,0	75,0	-	M10x1	MHC-HSK-A063-12-120-1-0-A	30273804
63	12,0	28,0	32,0	50,0	-	150,0	46,0	10,0	105,0	-	M10x1	MHC-HSK-A063-12-150-1-0-A	30251147
63	12,0	28,0	32,0	50,0	_	200,0	46,0	10,0	155,0	-	M10x1	MHC-HSK-A063-12-200-1-0-A	30251155
63	14,0	30,0	34,0	50,0		85,0	46,0	10,0	40,0	-	M10x1	MHC-HSK-A063-14-085-1-0-A	30251018
63	14,0	30,0	34,0	50,0	-	120,0	46,0	10,0	75,0	-	M10x1	MHC-HSK-A063-14-120-1-0-A	30273805
63	14,0	30,0	34,0	50,0	-	150,0	46,0	10,0	105,0	-	M10x1	MHC-HSK-A063-14-150-1-0-A	30251148
63	14,0	30,0	34,0	50,0	-	200,0	46,0	10,0	155,0	-	M10x1	MHC-HSK-A063-14-200-1-0-A	30251156
63	16,0	34,0	38,0	50,0	-	90,0	49,0	10,0	46,0	-	M12x1	MHC-HSK-A063-16-090-1-0-A	30251019
63	16,0	34,0	38,0	50,0	-	120,0	49,0	10,0	76,0	-	M12x1	MHC-HSK-A063-16-120-1-0-A	30273806
63	16,0	34,0	38,0	50,0	-	150,0	49,0	10,0	106,0	-	M12x1	MHC-HSK-A063-16-150-1-0-A	30251149

HydroChuck | nach DIN 69882-7 mit axialer Werkzeuglängeneinstellung | Schaft HSK-A nach DIN 69893-1

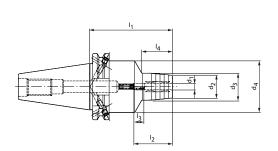
HSK-A					Baur	maße					G	Spezifikation	Bestell-Nr.
	d ₁	d ₂	d ₃	d ₄	d ₅	I ₁	l ₂	l ₃	l ₄	l ₅			
63	16,0	34,0	38,0	50,0	_	200,0	49,0	10,0	156,0	_	M12x1	MHC-HSK-A063-16-200-1-0-A	30251157
63	18,0	36,0	40,0	50,0	_	90,0	49,0	10,0	47,0	_	M12x1	MHC-HSK-A063-18-090-1-0-A	30251020
63	18,0	36,0	40,0	50,0	_	120,0	49,0	10,0	77,0	-	M12x1	MHC-HSK-A063-18-120-1-0-A	30273807
63	18,0	36,0	40,0	50,0	_	150,0	49,0	10,0	107,0	_	M12x1	MHC-HSK-A063-18-150-1-0-A	30251150
63	18,0	36,0	40,0	50,0	_	200,0	49,0	10,0	157,0	-	M12x1	MHC-HSK-A063-18-200-1-0-A	30251158
63	20,0	38,0	42,0	50,0	_	90,0	51,0	10,0	48,0	_	M16x1	MHC-HSK-A063-20-090-1-0-A	30251021
63	20,0	38,0	42,0	50,0	_	120,0	51,0	10,0	78,0	-	M16x1	MHC-HSK-A063-20-120-1-0-A	30273808
63	20,0	38,0	42,0	50,0	_	150,0	51,0	10,0	108,0	_	M16x1	MHC-HSK-A063-20-150-1-0-A	30251151
63	20,0	38,0	42,0	50,0	_	200,0	51,0	10,0	158,0	-	M16x1	MHC-HSK-A063-20-200-1-0-A	30251159
63	25,0	53,0	57,0	52,5	_	120,0	57,0	10,0	63,0	_	M16x1	MHC-HSK-A063-25-120-1-0-A	30251022
63	25,0	53,0	57,0	52,5	_	150,0	57,0	10,0	63,0	-	M16x1	MHC-HSK-A063-25-150-1-0-A	30785029
63	25,0	53,0	57,0	52,5	_	200,0	57,0	10,0	63,0	-	M16x1	MHC-HSK-A063-25-200-1-0-A	30882168
63	32,0	59,0	63,0	59,0	52,5	125,0	61,0	10,0	61,0	77,0	M16x1	MHC-HSK-A063-32-125-1-0-A	30251023
63	32,0	59,0	63,0	59,0	52,5	150,0	61,0	10,0	65,0	77,0	M16x1	MHC-HSK-A063-32-150-1-0-A	30882169
63	32,0	59,0	63,0	59,0	52,2	200,0	61,0	10,0	65,0	77,0	M16x1	MHC-HSK-A063-32-200-1-0-A	30882171
80	6,0	22,0	26,0	50,0	-	70,0	37,0	10,0	24,0	-	M5	MHC-HSK-A080-06-070-1-0-A	30355067
80	8,0	24,0	28,0	50,0	_	70,0	37,0	10,0	24,0	-	M6	MHC-HSK-A080-08-070-1-0-A	30355068
80	10,0	26,0	30,0	50,0	_	80,0	41,0	10,0	35,0	_	M8x1	MHC-HSK-A080-10-080-1-0-A	30355069
80	12,0	28,0	32,0	50,0	_	85,0	46,0	10,0	40,0	_	M10x1	MHC-HSK-A080-12-085-1-0-A	30355071
80	14,0	30,0	34,0	50,0	_	85,0	46,0	10,0	40,0	_	M10x1	MHC-HSK-A080-14-085-1-0-A	30355071
80	16,0	34,0	38,0	50,0	_	95,0	49,0	10,0	51,0	_	M12x1	MHC-HSK-A080-16-095-1-0-A	30355074
80	18,0	36,0	40,0	50,0		95,0	49,0	10,0	51,0	_	M12x1	MHC-HSK-A080-18-095-1-0-A	30355075
80	20,0	38,0	42,0	50,0	_	95,0	51,0	10,0	51,0	_	M16x1	MHC-HSK-A080-20-095-1-0-A	30355077
80	25,0	53,0	57,0	63,0	_	110,0	57,0	10,0	65,0	_	M16x1	MHC-HSK-A080-25-110-1-0-A	30355078
80	32,0	59,0	63,0	66,5	_	125,0	61,0	10,0	63,0	_	M16x1	MHC-HSK-A080-32-125-1-0-A	30355080
100	6,0	22,0	26,0	50,0	_	75,0	37,0	10,0	26,0	_	M5	MHC-HSK-A100-06-075-1-0-A	30251024
100	6,0	22,0	26,0	50,0	_	120,0	37,0	10,0	71,0	_	M5	MHC-HSK-A100-06-120-1-0-A	30273809
100	6,0	22,0	26,0	50,0	_	165,0	37,0	10,0	116,0	_	M5	MHC-HSK-A100-06-165-1-0-A	30273810
100	8,0	24,0	28,0	50,0	_	75,0	37,0	10,0	26,0	_	M6	MHC-HSK-A100-08-075-1-0-A	30251025
100	8,0	24,0	28,0	50,0		120,0	37,0	10,0	71,0	_	M6	MHC-HSK-A100-08-120-1-0-A	30273811
100	8,0	24,0	28,0	50,0	_	165,0	37,0	10,0	116,0	_	M6	MHC-HSK-A100-08-165-1-0-A	30273812
100	10,0	26,0	30,0	50,0		90,0	41,0	10,0	42,0	_	M8x1	MHC-HSK-A100-10-090-1-0-A	30251026
100	10,0	26,0	30,0	50,0	_	120,0	41,0	10,0	72,0	_	M8x1	MHC-HSK-A100-10-120-1-0-A	30273813
100	10,0	26,0	30,0	50,0		165,0	41,0	10,0	117,0	_	M8x1	MHC-HSK-A100-10-165-1-0-A	30273814
100	12,0	28,0	32,0	50,0	_	95,0	46,0	10,0	47,0	_	M10x1	MHC-HSK-A100-12-095-1-0-A	30251027
100	12,0	28,0	32,0	50,0		120,0	46,0	10,0	72,0	_	M10x1	MHC-HSK-A100-12-120-1-0-A	30273816
100	12,0	28,0	32,0	50,0	_	165,0	46,0	10,0	117,0	_	M10x1	MHC-HSK-A100-12-165-1-0-A	30273817
100	14,0	30,0	34,0	50,0	_	95,0	46,0	10,0	47,0	_	M10x1	MHC-HSK-A100-14-095-1-0-A	30251028
100	16,0	34,0	38,0	50,0	_	100,0	49,0	10,0	53,0	_	M12x1	MHC-HSK-A100-16-100-1-0-A	30251029
100	16,0	34,0	38,0	50,0		135,0	49,0	10,0	88,0		M12x1	MHC-HSK-A100-16-135-1-0-A	30273818
100	16,0	34,0	38,0	50,0		165,0	49,0	10,0	118,0	_	M12x1	MHC-HSK-A100-16-165-1-0-A	30273819
				-			-		-				
100	18,0	36,0	40,0	50,0		100,0	49,0	10,0	53,0	-	M12x1 M16x1	MHC-HSK-A100-18-100-1-0-A MHC-HSK-A100-20-105-1-0-A	30251030 30251031
100	20,0	38,0	42,0	50,0	-	105,0	51,0	10,0	59,0	-			
	20,0	38,0	42,0	50,0	-	135,0	51,0	10,0	89,0	-	M16x1	MHC-HSK-A100-20-135-1-0-A MHC-HSK-A100-20-165-1-0-A	30273820
100	20,0	38,0	42,0	50,0	-	165,0	51,0	10,0	119,0	-	M16x1		30273821
100	25,0	53,0	57,0	63,0	-	110,0	57,0	10,0	62,0	-	M16x1	MHC-HSK-A100-25-110-1-0-A	30251032
100	25,0	53,0	57,0	63,0	-	165,0	57,0	10,0	117,0	-	M16x1	MHC-HSK-A100-25-165-1-0-A	30882185
100	32,0	59,0	63,0	67,0	-	110,0	61,0	10,0	62,0	-	M16x1	MHC-HSK-A100-32-110-1-0-A	30251033
100	32,0	59,0	63,0	67,0	_	165,0	61,0	10,0	117,0	-	M16x1	MHC-HSK-A100-32-165-1-0-A	30882187

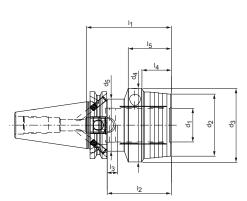
Maßangaben in mm.

Weitere Abmessungen auf Anfrage erhältlich.

Verwendung: Zum Spannen von Werkzeugen mit glatten Zylinderschäften nach DIN 1835 Form A, DIN 6535 Form HA sowie mit Ausnehmungen nach DIN 1835 Form B, E und DIN 6535 Form HB, HE direkt und mit Reduzierhülse im Spanndurchmesser. Der Spanndurchmesser ist für eine Schafttoleranz h6 ausgelegt.

Lieferumfang: Mit Längeneinstellschraube, ohne Kühlmittelrohr.


Ausführung: Höchste Werkzeugstandzeiten und Fertigungsqualitäten bei Einsatz von glatten Zylinderschäften nach DIN 1835 Form A und DIN 6535 Form HA. Bei einer Auskraglänge von


2,5xD (max. 50 mm) Rundlaufgenauigkeit 3 μm. Bei Einsatz von Zylinderschäften mit geneigter Spannfläche (Form E und Form HE) ist eine Beeinträchtigung der Genauigkeit möglich. Hinweis: Kühlmittelzufuhr über zentrale Durchgangsbohrung. Kühlmittelrohre, Codeträger, Reduzierhülsen zur Reduzierung des Spanndurchmessers (bei Verwendung der Reduzierhülse ist eine Beeinträchtigung der Genauigkeit möglich) siehe Katalog "SPANNEN". Längeneinstellschrauben auf Anfrage erhältlich.

Wuchtgüte: G 2,5 bei 25.000 min-1 im Auslieferungszustand.

HydroChuck

Mit axialer Werkzeuglängeneinstellung Schaft SK nach ISO 7388-1 Form AD/AF

SK	Baumaße										G	Spezifikation	Bestell-Nr.
	d ₁	d ₂	d ₃	d ₄	d ₅	l ₁	l ₂	l ₃	I ₄	l ₅			
30*	6,0	23,0	26,0	44,5	-	55,0	37,0	10,0	20,0	-	M5	MHC-SK030-06-055-1-0-A	30559118
30*	8,0	24,0	28,0	44,5	-	55,0	37,0	10,0	20,0	-	M6	MHC-SK030-08-055-1-0-A	30559119
30*	10,0	27,0	30,0	44,5	-	55,0	41,0	10,0	21,0	-	M8x1	MHC-SK030-10-055-1-0-A	30559120
30*	12,0	28,0	32,0	44,5	-	55,0	46,0	10,0	22,0	-	M8x1	MHC-SK030-12-055-1-0-A	30559121
30*	14,0	30,0	34,0	44,5	-	90,0	46,0	10,0	42,0	-	M8x1	MHC-SK030-14-090-1-0-A	30559122
30*	16,0	34,0	38,0	44,5	-	90,0	49,0	10,0	50,0	-	M8x1	MHC-SK030-16-090-1-0-A	30559123
30*	18,0	36,0	40,0	44,5	-	90,0	49,0	10,0	50,0	-	M8x1	MHC-SK030-18-090-1-0-A	30559124
30*	20,0	38,0	42,0	44,5	-	90,0	51,0	10,0	50,0	-	M8x1	MHC-SK030-20-090-1-0-A	30559125
40	6,0	22,0	26,0	49,5	-	80,5	37,0	10,0	29,5	-	M5	MHC-SK040-06-081-3-0-A	30250958
40	8,0	24,0	28,0	49,5	-	80,5	37,0	10,0	30,0	-	M6	MHC-SK040-08-081-3-0-A	30250959
40	10,0	26,0	30,0	49,5	-	80,5	41,0	10,0	35,0	-	M8x1	MHC-SK040-10-081-3-0-A	30250960
40	12,0	28,0	32,0	49,5	-	80,5	46,0	10,0	40,0	-	M10x1	MHC-SK040-12-081-3-0-A	30250961
40	14,0	30,0	34,0	49,5	-	80,5	46,0	10,0	40,0	-	M10x1	MHC-SK040-14-081-3-0-A	30250962
40	16,0	34,0	38,0	49,5	-	80,5	49,0	10,0	45,0	-	M12x1	MHC-SK040-16-081-3-0-A	30250963
40	18,0	36,0	40,0	49,5	-	80,5	49,0	10,0	46,0	-	M12x1	MHC-SK040-18-081-3-0-A	30250964
40	20,0	38,0	42,0	49,5	-	80,5	51,0	10,0	47,0	-	M16x1	MHC-SK040-20-081-3-0-A	30250965
40	25,0	51,0	55,0	63,0	49,5	80,5	57,0	10,0	28,0	42,0	M16x1	MHC-SK040-25-081-3-0-A	30250966
40	32,0	59,0	63,0	70,0	49,5	80,5	61,0	10,0	20,0	41,0	M16x1	MHC-SK040-32-081-3-0-A	30250967
50	6,0	22,0	26,0	49,5	-	80,5	37,0	10,0	29,5	-	M5	MHC-SK050-06-081-3-0-A	30250968
50	8,0	24,0	28,0	49,5	-	80,5	37,0	10,0	30,0	-	M6	MHC-SK050-08-081-3-0-A	30250969
50	10,0	26,0	30,0	49,5	-	80,5	41,0	10,0	35,0	-	M8x1	MHC-SK050-10-081-3-0-A	30250970
50	12,0	28,0	32,0	49,5	-	80,5	46,0	10,0	40,0	-	M10x1	MHC-SK050-12-081-3-0-A	30250971
50	14,0	30,0	34,0	49,5	-	80,5	46,0	10,0	40,0	-	M10x1	MHC-SK050-14-081-3-0-A	30250972
50	16,0	34,0	38,0	49,5	-	80,5	49,0	10,0	45,0	-	M12x1	MHC-SK050-16-081-3-0-A	30250973
50	18,0	36,0	40,0	49,5	-	80,5	49,0	10,0	46,0	-	M12x1	MHC-SK050-18-081-3-0-A	30250974
50	20,0	38,0	42,0	49,5	-	80,5	51,0	10,0	42,0	-	M16x1	MHC-SK050-20-081-3-0-A	30250975
50	25,0	51,0	55,0	63,0	-	100,0	57,0	10,0	48,0	-	M16x1	MHC-SK050-25-100-3-0-A	30250976
50	32,0	59,0	63,0	70,0	-	100,0	61,0	10,0	61,0	-	M16x1	MHC-SK050-32-100-3-0-A	30250977

^{*} Ausführung: Steilkegelgröße ist nicht in Kombi-Ausführung AD/AF erhältlich

Maßangaben in mm.

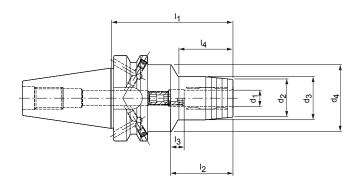
Weitere Abmessungen auf Anfrage erhältlich.

Verwendung: Zum Spannen von Werkzeugen mit glatten Zylinderschäften nach DIN 1835 Form A, DIN 6535 Form HA sowie mit Ausnehmungen nach DIN 1835 Form B, E und DIN 6535 Form HB, HE direkt und mit Reduzierhülse im Spanndurchmesser. Der Spanndurchmesser ist für eine Schafttoleranz h6 ausgelegt.

 $Lie ferum fang: Mit\ L\"{a}ngene instellschraube,\ ohne\ Anzugsbolzen.$

Ausführung: Höchste Werkzeugstandzeiten und Fertigungsqualitäten bei Einsatz von glatten Zylinderschäften nach DIN 1835 Form A und DIN 6535 Form HA. Bei einer Auskraglänge von 2,5xD (max. 50 mm) Rundlaufgenauigkeit 3 µm. Bei Einsatz von Zylinderschäf-

ten mit geneigter Spannfläche (Form E und Form HE) ist eine Beeinträchtigung der Genauigkeit möglich. Grundeinstellung Form AD, falls Form AF gewünscht wird, bitte bei der Bestellung angeben.


Hinweis: Künlmittelzufuhr über zentrale Durchgangsbohrung. Anzugsbolzen, Reduzierhülsen zur Reduzierung des Spanndurchmessers (bei Verwendung der Reduzierhülse ist eine Beeinträchtigung der Genauigkeit möglich) siehe Katalog "SPANNEN".

Längeneinstellschrauben auf Anfrage erhältlich.

Wuchtgüte: G 2,5 bei 25.000 min⁻¹ im Auslieferungszustand.

HydroChuck

Mit axialer Werkzeuglängeneinstellung Schaft BT nach ISO 7388-2 Form JD/JF (JIS B 6339)

BT	Baumaße								G	Spezifikation	Bestell-Nr.
	d ₁	d ₂	d ₃	d ₄	l ₁	l ₂	l ₃	I ₄			
30*	6,0	23,0	26,0	45,0	50,8	37,0	10,0	12,3	M5	MHC-BT030-06-051-1-0-A	30270438
30*	8,0	25,0	28,0	45,0	50,8	37,0	10,0	12,5	M6	MHC-BT030-08-051-1-0-A	30270439
30*	10,0	27,0	30,0	45,0	50,8	41,0	10,0	13,0	M8x1	MHC-BT030-10-051-1-0-A	30270440
30*	12,0	29,0	32,0	45,0	50,8	46,0	10,0	14,0	M8x1	MHC-BT030-12-051-1-0-A	30270441
30*	14,0	30,0	34,0	45,0	90,0	46,0	10,0	45,0	M8x1	MHC-BT030-14-090-1-0-A	30270442
30*	16,0	34,0	38,0	45,0	90,0	49,0	10,0	50,0	M8x1	MHC-BT030-16-090-1-0-A	30270443
30*	18,0	36,0	40,0	45,0	90,0	49,0	10,0	50,0	M8x1	MHC-BT030-18-090-1-0-A	30270444
30*	20,0	38,0	42,0	45,0	90,0	51,0	10,0	50,0	M8x1	MHC-BT030-20-090-1-0-A	30270445
40	6,0	22,0	26,0	49,5	90,0	37,0	10,0	29,0	M5	MHC-BT040-06-090-3-0-A	30251037
40	8,0	24,0	28,0	49,5	90,0	37,0	10,0	30,0	M6	MHC-BT040-08-090-3-0-A	30251038
40	10,0	26,0	30,0	49,5	90,0	41,0	10,0	35,0	M8x1	MHC-BT040-10-090-3-0-A	30251039
40	12,0	28,0	32,0	49,5	90,0	46,0	10,0	40,0	M10x1	MHC-BT040-12-090-3-0-A	30251040
40	14,0	30,0	34,0	49,5	90,0	46,0	10,0	40,0	M10x1	MHC-BT040-14-090-3-0-A	30251041
40	16,0	34,0	38,0	49,5	90,0	49,0	10,0	45,0	M12x1	MHC-BT040-16-090-3-0-A	30251042
40	18,0	36,0	40,0	49,5	90,0	49,0	10,0	46,0	M12x1	MHC-BT040-18-090-3-0-A	30251043
40	20,0	38,0	42,0	49,5	90,0	51,0	10,0	47,0	M16x1	MHC-BT040-20-090-3-0-A	30251044
40	25,0	51,0	55,0	52,0	90,0	57,0	10,0	50,0	M16x1	MHC-BT040-25-090-3-0-A	30251045
40	32,0	59,0	63,0	62,0	90,0	61,0	10,0	48,0	M16x1	MHC-BT040-32-090-3-0-A	30251046
50	6,0	22,0	26,0	49,5	90,0	37,0	10,0	29,0	M5	MHC-BT050-06-090-3-0-A	30251047
50	8,0	24,0	28,0	49,5	90,0	37,0	10,0	30,0	M6	MHC-BT050-08-090-3-0-A	30251048
50	10,0	26,0	30,0	49,5	90,0	41,0	10,0	34,0	M8x1	MHC-BT050-10-090-3-0-A	30251049
50	12,0	28,0	32,0	49,5	90,0	46,0	10,0	34,0	M10x1	MHC-BT050-12-090-3-0-A	30251050
50	14,0	30,0	34,0	49,5	90,0	46,0	10,0	35,0	M10x1	MHC-BT050-14-090-3-0-A	30251051
50	16,0	34,0	38,0	49,5	90,0	49,0	10,0	35,0	M12x1	MHC-BT050-16-090-3-0-A	30251052
50	18,0	36,0	40,0	49,5	90,0	49,0	10,0	35,0	M12x1	MHC-BT050-18-090-3-0-A	30251053
50	20,0	38,0	42,0	49,5	90,0	51,0	10,0	35,0	M16x1	MHC-BT050-20-090-3-0-A	30251054
50	25,0	51,0	55,0	63,0	110,0	57,0	10,0	48,0	M16x1	MHC-BT050-25-110-3-0-A	30251055
50	32,0	59,0	63,0	70,0	110,0	61,0	10,0	50,0	M16x1	MHC-BT050-32-110-3-0-A	30251056

^{*} Ausführung: Steilkegelgröße ist nicht in Kombi-Ausführung JD/JF erhältlich

Maßangaben in mm.

Weitere Abmessungen auf Anfrage erhältlich.

Verwendung: Zum Spannen von Werkzeugen mit glatten Zylinderschäften nach DIN 1835 Form A, DIN 6535 Form HA sowie mit Ausnehmungen nach DIN 1835 Form B, E und DIN 6535 Form HB, HE direkt und mit Reduzierhülse im Spanndurchmesser. Der Spanndurchmesser ist für eine Schafttoleranz h6 ausgelegt.

 $Lie ferum fang: Mit\ L\"{a}ngene instellschraube,\ ohne\ Anzugsbolzen.$

Ausführung: Höchste Werkzeugstandzeiten und Fertigungsqualitäten bei Einsatz von glatten Zylinderschäften nach DIN 1835 Form A und DIN 6535 Form HA. Bei einer Auskraglänge von 2,5xD (max. 50 mm) Rundlaufgenauigkeit 3 µm. Bei Einsatz von Zylinderschäf-

ten mit geneigter Spannfläche (Form E und Form HE) ist eine Beeinträchtigung der Genauigkeit möglich. Grundeinstellung Form JD, falls Form JF gewünscht wird, bitte bei der Bestellung angeben.

Hinweis: Künlmittelzufuhr über zentrale Durchgangsbohrung. Anzugsbolzen, Reduzierhülsen zur Reduzierung des Spanndurchmessers (bei Verwendung der Reduzierhülse ist eine Beeinträchtigung der Genauigkeit möglich) siehe Katalog "SPANNEN".

Längeneinstellschrauben auf Anfrage erhältlich.

Wuchtgüte: G 2,5 bei 25.000 min⁻¹ im Auslieferungszustand.

Flächenspannfutter für Hochleistungsfräsbearbeitungen

Das Flächenspannfutter von MAPAL überzeugt durch starke Spannung, einfaches Handling und einen deutlich verbesserten Rundlauf. Die Aufnahmebohrung wird deutlich genauer hergestellt als zuvor üblich. Damit wird das radiale Spiel des gespannten Werkzeugs verringert und der Rundlauf erheblich verbessert. Auch die große Toleranz an der seitlichen Spannfläche wird kompensiert.

Dafür setzt MAPAL auf ein Federelement in der Aufnahme, das einen definierten Formschluss zwischen Werkzeug und Aufnahme ermöglicht. Achsparallele Kühlkanäle im Spannbereich sorgen zudem für eine verbesserte Kühlmittelzuführung.

Um das Handling deutlich zu vereinfachen, kommt ein zweiteiliges Spannelement zum Einsatz. Damit wird das Anzugsmoment bei gleichbleibender Spannkraft gesenkt und das Werkzeug kann in der Aufnahme prozesssicher mit Handkraft gespannt werden.

AUF EINEN BLICK

- Deutlich genauere Aufnahmebohrung
- Mit Spanndurchmessern von 6 bis 32 mm für HSK-A und SK verfügbar
- Wuchtgüte G 2,5 bei 25.000 min⁻¹
- Hervorragend kombinierbar mit MAPAL Hochleistungsfräsern

VORTEILE

- Einfachstes Handling dank Differentialschraube
- Höchste Wirtschaftlichkeit und Präzision

Flächenspannfutter für Hochleistungsfräsbearbeitungen

Das Mill Chuck, HB überzeugt durch starke Spannung, einfaches Handling und einen deutlich verbesserten Rundlauf. Damit ist es die perfekte Lösung bei Bearbeitungen mit hohen Auszugskräften und Anwendungen in schwer zerspanbaren Materialien.

1 Dezentrale Kühlmittelübergabe

- Optimale Kühlmittelversorgung

2 Differentialschraube

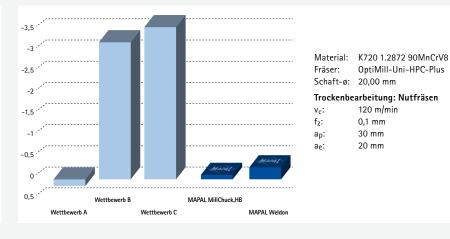
 Einfaches Handling mit reduziertem Kraftaufwand

3 Federsystem

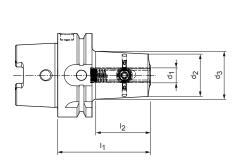
 Definierte axiale Werkzeugpositionierung (kein Werkzeugauszug)

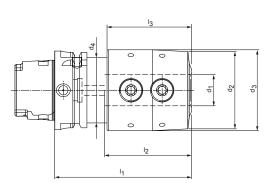
4 Kontui

 Anwendungsoptimierte Kontur für maximale Steifigkeit



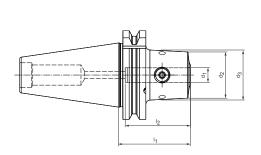
Merkmale

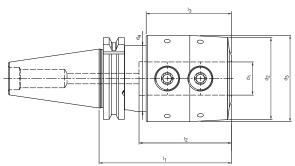

Baumaße:


- Deutlich genauere Aufnahmebohrung
- Einfachstes Handling mit reduziertem
 Kraftaufwand dank Differentialschraube
- Definierte axiale Werkzeugpositionierung dank Federsystem (kein Werkzeugauszug)
- Die beste Lösung bei Bearbeitungen mit hohen Auszugskräften (Trochoidalfräsen)
- Aktuell verfügbar in HSK-A063/100 und SK040/050

Fräserauszug [mm]

Schaft HSK-A nach DIN 69893-1

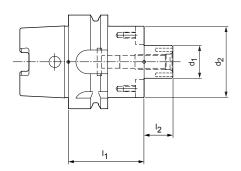



HSK-A				Baumaße				Spezifikation	Bestell-Nr.
	d ₁	d ₂	d ₃	d ₄	I ₁	l ₂	l ₃		
63	6,0	22,5	26,2	-	65,0	36,2	-	MWC-HSK-A063-06-065-1-0-W	30941344
63	8,0	25,0	28,7	-	65,0	36,2	-	MWC-HSK-A063-08-065-1-0-W	30941345
63	10,0	32,0	36,2	-	70,0	41,2	-	MWC-HSK-A063-10-070-1-0-W	30941346
63	12,0	37,5	42,7	-	80,0	51,2	-	MWC-HSK-A063-12-080-1-0-W	30941347
63	16,0	43,0	48,3	-	80,0	52,2	-	MWC-HSK-A063-16-080-1-0-W	30941349
63	20,0	46,5	52,0	-	80,0	54,0	-	MWC-HSK-A063-20-080-1-0-W	30941371
63	25,0	62,0	65,0	52,5	110,0	69,9	68,0	MWC-HSK-A063-25-110-1-0-W	30941372
63	32,0	69,0	72,0	52,5	110,0	69,9	68,0	MWC-HSK-A063-32-110-1-0-W	30941373
100	6,0	22,5	27,5	-	80,0	48,2	-	MWC-HSK-A100-06-080-1-0-W	30941374
100	8,0	25,0	30,0	-	80,0	48,2	-	MWC-HSK-A100-08-080-1-0-W	30941375
100	10,0	32,0	36,9	-	80,0	48,2	-	MWC-HSK-A100-10-080-1-0-W	30941376
100	12,0	37,5	42,9	-	85,0	53,2	-	MWC-HSK-A100-12-085-1-0-W	30941377
100	16,0	43,0	50,0	-	100,0	68,2	-	MWC-HSK-A100-16-100-1-0-W	30941379
100	20,0	46,5	53,5	-	100,0	68,2	-	MWC-HSK-A100-20-100-1-0-W	30941381
100	25,0	62,0	65,0	-	100,0	68,1	-	MWC-HSK-A100-25-100-1-0-W	30941382
100	32,0	69,0	72,0	-	110,0	78,1	-	MWC-HSK-A100-32-110-1-0-W	30925430

Maßangaben in mm.

Weitere Abmessungen auf Anfrage erhältlich.

Schaft SK nach ISO 7388-1 Form AD/AF

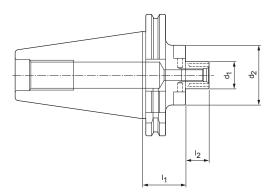

SK				Baumaße				Spezifikation	Bestell-Nr.
	d ₁	d_2	d ₃	d ₄	I ₁	l ₂	l ₃		
40	6,0	22,5	25,4	-	50,0	28,1	-	MWC-SK040-06-050-3-0-W	31059420
40	8,0	25,0	27,9	-	50,0	28,1	-	MWC-SK040-08-050-3-0-W	31059421
40	10,0	32,0	34,8	-	50,0	28,1	-	MWC-SK040-10-050-3-0-W	31059422
40	12,0	37,5	40,3	-	50,0	28,1	-	MWC-SK040-12-050-3-0-W	31059423
40	16,0	43,0	47,3	-	63,0	43,0	-	MWC-SK040-16-063-3-0-W	31059425
40	20,0	46,5	49,5	-	63,0	43,0	-	MWC-SK040-20-063-3-0-W	31059427
40	25,0	62,0	65,0	49,5	100,0	69,9	64,5	MWC-SK040-25-100-3-0-W	31059428
40	32,0	69,0	72,0	49,5	100,0	69,9	64,5	MWC-SK040-32-100-3-0-W	31059429
50	6,0	22,5	26,7	-	63,0	41,1	-	MWC-SK050-06-063-3-0-W	31059430
50	8,0	25,0	29,2	-	63,0	41,1	-	MWC-SK050-08-063-3-0-W	31059431
50	10,0	32,0	36,2	-	63,0	41,1	-	MWC-SK050-10-063-3-0-W	31059432
50	12,0	37,5	41,7	-	63,0	41,1	-	MWC-SK050-12-063-3-0-W	31059433
50	16,0	43,0	47,1	-	63,0	41,1	-	MWC-SK050-16-063-3-0-W	31059435
50	20,0	46,5	50,6	-	63,0	41,1	-	MWC-SK050-20-063-3-0-W	31059437
50	25,0	62,0	67,8	-	80,0	58,1	-	MWC-SK050-25-080-3-0-W	31059438
50	32,0	69,0	76,9	-	100,0	78,1	-	MWC-SK050-32-100-3-0-W	31059439

Maßangaben in mm.

Weitere Abmessungen auf Anfrage erhältlich.

Aufsteckfräserdorn

Mechanische Werkzeugspannung Mit vergrößertem Anlagedurchmesser nach DIN 69882-3 Schaft HSK-A nach DIN 69893-1

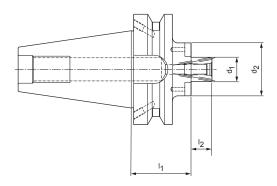


Schaft HSK-A mit dezentraler Kühlmittelübergabe

HSK-A		Baur	naße		G	Spezifikation	Bestell-Nr.
	d ₁	d ₂	I ₁	l ₂			
63	16	38	50	17	M8	MCA-HSK-A063-16-050-1-0-W	31312171
63	16	38	100	17	M8	MCA-HSK-A063-16-100-1-0-W	31312176
63	16	38	160	17	M8	MCA-HSK-A063-16-160-1-0-W	31312191
63	22	48	50	19	M10	MCA-HSK-A063-22-050-1-0-W	31312172
63	22	48	100	19	M10	MCA-HSK-A063-22-100-1-0-W	31312177
63	22	48	160	19	M10	MCA-HSK-A063-22-160-1-0-W	31312192
63	27	60	60	21	M12	MCA-HSK-A063-27-060-1-0-W	31312173
63	27	60	100	21	M12	MCA-HSK-A063-27-100-1-0-W	31312178
63	27	60	160	21	M12	MCA-HSK-A063-27-160-1-0-W	31312193
63	32	78	60	24	M16	MCA-HSK-A063-32-060-1-0-W	31312174
63	32	78	100	24	M16	MCA-HSK-A063-32-100-1-0-W	31312179
63	32	78	160	24	M16	MCA-HSK-A063-32-160-1-0-W	31312194
63	40	89	60	27	M20	MCA-HSK-A063-40-060-1-0-W	31312175
63	40	89	100	27	M20	MCA-HSK-A063-40-100-1-0-W	31312190
100	16	38	50	17	M8	MCA-HSK-A100-16-050-1-0-W	31312195
100	16	38	100	17	M8	MCA-HSK-A100-16-100-1-0-W	31312200
100	16	38	160	17	M8	MCA-HSK-A100-16-160-1-0-W	31312205
100	22	48	50	19	M10	MCA-HSK-A100-22-050-1-0-W	31312196
100	22	48	100	19	M10	MCA-HSK-A100-22-100-1-0-W	31312201
100	22	48	160	19	M10	MCA-HSK-A100-22-160-1-0-W	31312206
100	27	60	50	21	M12	MCA-HSK-A100-27-050-1-0-W	31312197
100	27	60	100	21	M12	MCA-HSK-A100-27-100-1-0-W	31312202
100	27	60	160	21	M12	MCA-HSK-A100-27-160-1-0-W	31312207
100	32	78	50	24	M16	MCA-HSK-A100-32-050-1-0-W	31312198
100	32	78	100	24	M16	MCA-HSK-A100-32-100-1-0-W	31312203
100	32	78	160	24	M16	MCA-HSK-A100-32-160-1-0-W	31312208
100	40	89	60	27	M20	MCA-HSK-A100-40-060-1-0-W	31312199
100	40	89	100	27	M20	MCA-HSK-A100-40-100-1-0-W	31312204
100	40	89	160	27	M20	MCA-HSK-A100-40-160-1-0-W	31312209
100	60	140	70	40	M30	MCA-HSK-A100-60-070-1-0-W	31354755

Aufsteckfräserdorn

Mechanische Werkzeugspannung Mit vergrößertem Anlagedurchmesser nach DIN 69882-3 Schaft SK nach ISO 7388-1 Form AD/AF

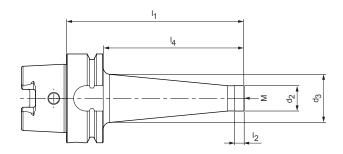


Schaft SK mit dezentraler Kühlmittelübergabe

SK		Baur	naße		G	Spezifikation	Bestell-Nr.
	d ₁	d ₂	I ₁	l ₂			
40	16	38	35	17	M8	MCA-SK040-16-035-3-0-W	31369046
40	22	48	35	19	M10	MCA-SK040-22-035-3-0-W	31369047
40	27	50	35	21	M12	MCA-SK040-27-035-3-0-W	31369048
50	22	48	35	19	M10	MCA-SK050-22-035-3-0-W	31312229
50	22	48	100	19	M10	MCA-SK050-22-100-3-0-W	31312233
50	22	48	160	19	M10	MCA-SK050-22-160-3-0-W	31312237
50	27	60	35	21	M12	MCA-SK050-27-035-3-0-W	31312230
50	27	60	100	21	M12	MCA-SK050-27-100-3-0-W	31312234
50	27	60	160	21	M12	MCA-SK050-27-160-3-0-W	31312238
50	32	78	35	24	M16	MCA-SK050-32-035-3-0-W	31312231
50	32	78	100	24	M16	MCA-SK050-32-100-3-0-W	31312235
50	32	78	160	24	M16	MCA-SK050-32-160-3-0-W	31312239
50	40	89	50	27	M20	MCA-SK050-40-050-3-0-W	31312232
50	40	89	100	27	M20	MCA-SK050-40-100-3-0-W	31312236
50	40	89	160	27	M20	MCA-SK050-40-160-3-0-W	31312240

Aufsteckfräserdorn

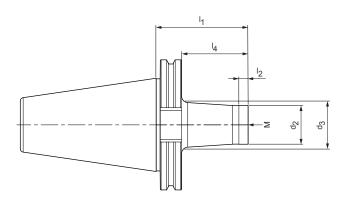
Mechanische Werkzeugspannung Mit vergrößertem Anlagedurchmesser nach DIN 69882-3 Schaft BT nach ISO 7388-2 Form JD/JF (JIS B 6339)



Schaft BT mit dezentraler Kühlmittelübergabe

ВТ		Baur	maße		G	Spezifikation	Bestell-Nr.
	d ₁	d ₂	I ₁	l ₂			
50	22	48	55	19	M8	MCA-BT050-22-055-3-0-W	31312241
50	22	48	100	19	M8	MCA-BT050-22-100-3-0-W	31312245
50	27	60	55	21	M10	MCA-BT050-27-055-3-0-W	31312242
50	27	60	100	21	M10	MCA-BT050-27-100-3-0-W	31312246
50	32	78	55	24	M12	MCA-BT050-32-055-3-0-W	31312243
50	32	78	100	24	M12	MCA-BT050-32-100-3-0-W	31312247
50	40	89	55	27	M16	MCA-BT050-40-055-3-0-W	31312244

Mechanische Werkzeugspannung Für Einschraubfräser, aus Stahl Schaft HSK-A nach DIN 69893-1

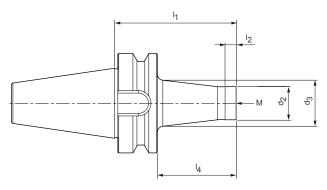


HSK-A			Baur	naße			Gewicht	Spezifikation	Bestell-Nr.
	М	d ₂	d ₃	I ₁	l ₂	l ₄	- [kg]		
63	8	14	23	76	12	50	0,8	MFS201N-M08-076-HSK-A063-S	31184124
63	8	14	25	101	12	75	0,9	MFS201N-M08-101-HSK-A063-S	31227420
63	8	14	30	126	12	100	1,0	MFS201N-M08-126-HSK-A063-S	31184059
63	10	18	25	76	12	50	0,8	MFS201N-M10-076-HSK-A063-S	31184130
63	10	18	30	101	12	75	0,9	MFS201N-M10-101-HSK-A063-S	31227421
63	10	18	35	126	12	100	1,1	MFS201N-M10-126-HSK-A063-S	31184066
63	10	18	45	176	12	150	1,6	MFS201N-M10-176-HSK-A063-S	31227410
63	12	21	30	76	12	50	0,9	MFS201N-M12-076-HSK-A063-S	31184140
63	12	21	43	151	12	125	1,4	MFS201N-M12-151-HSK-A063-S	31184097
63	12	21	35	101	12	75	1,0	MFS201N-M12-101-HSK-A063-S	31227422
63	12	21	38	126	12	100	1,2	MFS201N-M12-126-HSK-A063-S	31184076
63	12	21	45	176	12	150	1,6	MFS201N-M12-176-HSK-A063-S	31227411
63	16	29	34	76	12	50	1,0	MFS201N-M16-076-HSK-A063-S	31184152
63	16	29	35	101	12	75	1,1	MFS201N-M16-101-HSK-A063-S	31227423
63	16	29	40	126	12	100	1,3	MFS201N-M16-126-HSK-A063-S	31184087
63	16	29	44	151	12	125	1,7	MFS201N-M16-151-HSK-A063-S	31184098
63	16	29	48	176	12	150	2,0	MFS201N-M16-176-HSK-A063-S	31227412
63	16	29	50	226	12	200	2,5	MFS201N-M16-226-HSK-A063-S	31227414
63	16	29	50	276	12	250	3,0	MFS201N-M16-276-HSK-A063-S	31227418
100	8	14	23	79	12	50	2,3	MFS201N-M08-079-HSK-A100-S	31227405
100	8	14	30	129	12	100	2,4	MFS201N-M08-129-HSK-A100-S	31227398
100	10	18	25	79	12	50	2,3	MFS201N-M10-079-HSK-A100-S	31227406
100	10	18	35	129	12	100	2,5	MFS201N-M10-129-HSK-A100-S	31227399
100	10	18	45	179	12	150	3,0	MFS201N-M10-179-HSK-A100-S	31227400
100	12	21	30	79	12	50	2,2	MFS201N-M12-079-HSK-A100-S	31184139
100	12	21	38	129	12	100	2,6	MFS201N-M12-129-HSK-A100-S	31184074
100	12	21	52	179	12	150	3,4	MFS201N-M12-179-HSK-A100-S	31184100
100	12	21	58	229	12	200	4,0	MFS201N-M12-229-HSK-A100-S	31227401
100	12	21	62	279	12	250	4,7	MFS201N-M12-279-HSK-A100-S	31227403
100	16	29	34	79	12	50	2,4	MFS201N-M16-079-HSK-A100-S	31184151
100	16	29	40	129	12	100	2,7	MFS201N-M16-129-HSK-A100-S	31184085
100	16	29	58	179	12	150	3,8	MFS201N-M16-179-HSK-A100-S	31184103
100	16	29	58	229	12	200	4,3	MFS201N-M16-229-HSK-A100-S	31227402
100	16	29	66	279	12	250	5,5	MFS201N-M16-279-HSK-A100-S	31227556

Maßangaben in mm. Weitere Abmessungen auf Anfrage. Lieferumfang: Ohne Kühlmittelrohr. Ausführung: Zulässine Rundlaufahw $\label{thm:continuous} Hinweis: K\"uhlmittelrohre siehe Katalog "SPANNEN". \\ Wuchtg\"ute: G 6,3 bei 25.000 min^{-1} im Auslieferungszustand. \\$

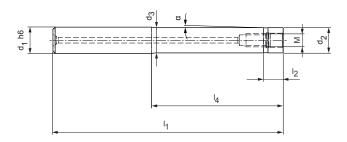
Ausführung: Zulässige Rundlaufabweichung des Kegelhohlschaftes zum Spanndurchmesser d $_1=3\ \mu m.$

Mechanische Werkzeugspannung Für Einschraubfräser, aus Stahl Schaft SK nach ISO 7388-1 Form AD



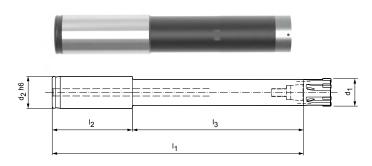
SK			Baur	naße			Gewicht [kg]	Spezifikation	Bestell-Nr.
	M	d ₂	d_3	I ₁	l ₂	l ₄	[kg]		
40	8	14	23	69,1	12	50	0,9	MFS201N-M08-069-SK040-S	31227376
40	8	14	25	94,1	12	75	1,1	MFS201N-M08-094-SK040-S	31227377
40	8	14	30	119,1	12	100	1,2	MFS201N-M08-119-SK040-S	31227363
40	10	18	25	69,1	12	50	1,0	MFS201N-M10-069-SK040-S	31184128
40	10	18	30	94,1	12	75	1,2	MFS201N-M10-094-SK040-S	31227378
40	10	18	35	119,1	12	100	1,3	MFS201N-M10-119-SK040-S	31184063
40	10	18	45	169,1	12	150	1,8	MFS201N-M10-169-SK040-S	31227367
40	12	21	30	69,1	12	50	1,0	MFS201N-M12-069-SK040-S	31184136
40	12	21	35	94,1	12	75	1,2	MFS201N-M12-094-SK040-S	31227379
40	12	21	38	119,1	12	100	1,3	MFS201N-M12-119-SK040-S	31184071
40	12	21	48	169,1	12	150	2,0	MFS201N-M12-169-SK040-S	31227368
40	16	29	34	69,1	12	50	1,2	MFS201N-M16-069-SK040-S	31184147
40	16	29	35	94,1	12	75	1,3	MFS201N-M16-094-SK040-S	31227380
40	16	29	40	119,1	12	100	1,5	MFS201N-M16-119-SK040-S	31184081
40	16	29	48	169,1	12	150	2,2	MFS201N-M16-169-SK040-S	31227369
50	10	18	25	69,1	12	50	2,8	MFS201N-M10-069-SK050-S	31227558
50	10	18	30	94,1	12	75	3,0	MFS201N-M10-094-SK050-S	31227559
50	10	18	35	119,1	12	100	3,1	MFS201N-M10-119-SK050-S	31227554
50	10	18	45	169,1	12	150	3,4	MFS201N-M10-169-SK050-S	31227555
50	12	21	30	69,1	12	50	3,0	MFS201N-M12-069-SK050-S	31184134
50	12	21	38	119,1	12	100	3,1	MFS201N-M12-119-SK050-S	31184069
50	12	21	52	169,1	12	150	4,0	MFS201N-M12-169-SK050-S	31184099
50	16	29	34	69,1	12	50	2,9	MFS201N-M16-069-SK050-S	31184145
50	16	29	40	119,1	12	100	3,3	MFS201N-M16-119-SK050-S	31184079
50	16	29	48	169,1	12	150	3,9	MFS201N-M16-169-SK050-S	31184101

Hinweis: Anzugsbolzen siehe Katalog "SPANNEN". Wuchtgüte: G 16 bei $8.000~{\rm min^{-1}}$ im Auslieferungszustand.


Mechanische Werkzeugspannung Für Einschraubfräser, aus Stahl Schaft BT nach ISO 7388-2 Form JD/JF (JIS B 6339)

BT			Baur	maße			Gewicht [kg]	Spezifikation	Bestell-Nr.
	M	d ₂	d_3	I ₁	l ₂	l ₄	[Kg]		
40	8	14	23	77	12	50	1,2	MFS201N-M08-077-BT040-S	31227390
40	8	14	30	127	12	100	1,4	MFS201N-M08-127-BT040-S	31227381
40	10	18	25	77	12	50	1,2	MFS201N-M10-077-BT040-S	31227391
40	10	18	35	127	12	100	1,5	MFS201N-M10-127-BT040-S	31227382
40	12	21	30	77	12	50	1,2	MFS201N-M12-077-BT040-S	31227392
40	12	21	38	127	12	100	1,6	MFS201N-M12-127-BT040-S	31227383
40	16	29	34	77	12	50	1,3	MFS201N-M16-077-BT040-S	31227393
40	16	29	40	127	12	100	1,7	MFS201N-M16-127-BT040-S	31227384
50	12	21	30	88	12	50	4,0	MFS201N-M12-088-BT050-S	31227440
50	12	21	38	138	12	100	4,1	MFS201N-M12-138-BT050-S	31227430
50	16	29	34	88	12	50	3,9	MFS201N-M16-088-BT050-S	31227441
50	16	29	40	138	12	100	4,3	MFS201N-M16-138-BT050-S	31227431

Mechanische Werkzeugspannung Für Einschraubfräser aus Vollhartmetall Zylinderschaft nach DIN1835-A



Vollhartmetall-Verlängerungen für Einschraubfräser

			Baun	паве				Innen- - kühlung	Spezifikation	Bestell-Nr.
М	d ₁ h6	d_2	d_3	I ₁	l ₄	I_2	α	,g		
4,5	10	7,7	10	65	20	-	-	✓	MFS101-45-020-ZYL-HA10-H	31217761
4,5	10	7,7	10	85	40	-	1,65°	V	MFS101-45-040-ZYL-HA10-H	31217755
4,5	10	7,7	10	105	60	-	1,1°	·	MFS101-45-060-ZYL-HA10-H	31217757
4,5	10	7,7	10	130	80	-	0,82°	V	MFS101-45-080-ZYL-HA10-H	31217758
4,5	10	7,7	10	150	100	-	0,66°	· ·	MFS101-45-100-ZYL-HA10-H	31217760
6	10	9,5	10	60	20	9	0,72°	· ·	MFS101-06-020-ZYL-HA10-H	31166769
6	10	9,5	10	80	40	9	0,36°	·	MFS101-06-040-ZYL-HA10-H	31166770
6	10	9,5	10	100	60	9	0,24°	V	MFS101-06-060-ZYL-HA10-H	31166771
6	10	9,5	10	120	80	9	0,18°	· ·	MFS101-06-080-ZYL-HA10-H	31166772
8	16	12,8	16	95	40	-	2,29°	V	MFS101-08-040-ZYL-HA16-H	31166749
8	16	12,8	16	115	60	-	1,53°	·	MFS101-08-060-ZYL-HA16-H	31166750
8	16	12,8	16	135	80	-	1,15°	V	MFS101-08-080-ZYL-HA16-H	31166751
8	16	12,8	16	155	100	-	0,92°	· ·	MFS101-08-100-ZYL-HA16-H	31166752
8	16	12,8	16	175	120	-	0,76°	· ·	MFS101-08-120-ZYL-HA16-H	31166753
10	20	17,8	20	100	40	-	1,58°	· /	MFS101-10-040-ZYL-HA20-H	31166754
10	20	17,8	20	120	60	-	1,05°	V	MFS101-10-060-ZYL-HA20-H	31166755
10	20	17,8	20	140	80	-	0,79°	· ·	MFS101-10-080-ZYL-HA20-H	31166756
10	20	17,8	20	160	100	-	0,63°	V	MFS101-10-100-ZYL-HA20-H	31166757
10	20	17,8	20	180	120	-	0,53°	· ·	MFS101-10-120-ZYL-HA20-H	31166758
12	25	23	24,3	136	80	9	0,591°	V	MFS101-12-080-ZYL-HA25-H	31166759
12	25	23	24,3	156	100	9	0,449°	· ·	MFS101-12-100-ZYL-HA25-H	31166760
12	25	23	24,3	176	120	9	0,362°	· ·	MFS101-12-120-ZYL-HA25-H	31166761
12	25	23	24,3	196	140	9	0,303°	· ·	MFS101-12-140-ZYL-HA25-H	31166762
12	25	23	24,3	216	160	9	0,260°	V	MFS101-12-160-ZYL-HA25-H	31166763
16	32	29	31,5	160	100	9	0,828°	V	MFS101-16-100-ZYL-HA32-H	31166764
16	32	29	31,5	210	150	9	0,517°	✓	MFS101-16-150-ZYL-HA32-H	31166765
16	32	29	31,5	260	200	9	0,376°	~	MFS101-16-200-ZYL-HA32-H	31166766
16	32	29	31,5	310	250	9	0,295°	V	MFS101-16-250-ZYL-HA32-H	31166767
16	32	29	31,5	360	300	9	0,243°	~	MFS101-16-300-ZYL-HA32-H	31166768

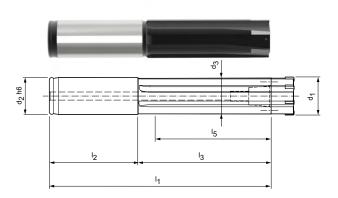
d ₁ 10, 16, 20 mm	MHC	UNIQ MillChuck, HA	Seite 83
d ₁ 25, 32 mm	MHC	HydroChuck	Seite 88

Mit Axialspannsystem Schaft nach MN 623, ähnlich DIN 1835-A

Lange Ausführung mit Zylinderschaft

		Baun	naße			Spezifikation	Bestell-Nr.
d ₁	HFS-Größe	d ₂ h6	I ₁				
15,60 - 18,59	10	20	160	50	110	HFS101SN-10-110-ZYL-HA20-S	30010248
18,60 - 21,29	12	20	179,5	50	129,5	HFS101SN-12-130-ZYL-HA20-S	30010249
21,30 - 23,99	14	20	180,5	50	130,5	HFS101SN-14-131-ZYL-HA20-S	30010250
24,00 - 29,99	16	25	211	60	151	HFS101SN-16-151-ZYL-HA25-S	30010251
30,00 - 39,99	20	25	210	60	150	HFS101SN-20-150-ZYL-HA25-S	30010252
40,00 - 65,00	24	32	266	60	206	HFS101SN-24-206-ZYL-HA32-S	30010253

Kurze Ausführung mit Zylinderschaft

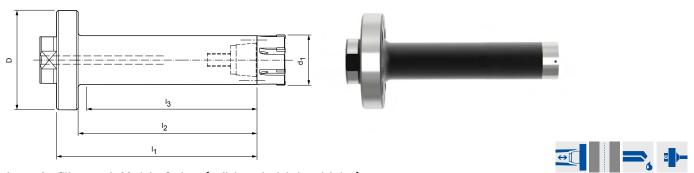

		Baun	naße			Spezifikation	Bestell-Nr.
d ₁	HFS-Größe	d ₂ h6	I ₁	l ₂	l ₃		
15,60 - 18,59	10	20	99	50	49	HFS101SN-10-049-ZYL-HA20-S	30010256
18,60 - 21,29	12	20	118,5	50	68,5	HFS101SN-12-069-ZYL-HA20-S	30010257
21,30 - 23,99	14	20	119,5	50	69,5	HFS101SN-14-070-ZYL-HA20-S	30010258
24,00 - 29,99	16	25	150	60	90	HFS101SN-16-090-ZYL-HA25-S	30010259
30,00 - 39,99	20	25	149	60	89	HFS101SN-20-089-ZYL-HA25-S	30010260
40,00 - 65,00	24	32	167	60	107	HFS101SN-24-107-ZYL-HA32-S	30010261

Extra kurze Ausführung mit Zylinderschaft

Baumaße						Spezifikation	Bestell-Nr.
d ₁	HFS-Größe	d ₂ h6	l ₁	l ₂	l ₃		
18,60 - 21,29	12	20	82	50	32	HFS101SN-12-032-ZYL-HA20-S	30078683

Mit Axialspannsystem Schaft nach MN 623, ähnlich DIN 1835-A

Lange Ausführung mit Zylinderschaft


			Baumaße					Spezifikation	Bestell-Nr.
d ₁	HFS-Größe	d ₂ h6	d_3	I ₁	l ₂	l ₃	l ₅		
16,60 - 19,39	10	20	16	160	50	110	94	HFS111SN-10A-110-ZYL-HA20-S	30026380
19,40 - 21,29	10	20	18,6	160	50	110	94	HFS111SN-10B-110-ZYL-HA20-S	30026488
21,30 - 24,99	12	20	20,5	180,5	50	130,5	114,5	HFS111SN-12-131-ZYL-HA20-S	30026489
25,00 - 28,99	14	25	24,2	211,5	60	151,5	132,5	HFS111SN-14-152-ZYL-HA25-S	30026510
29,00 - 32,29	16	25	28,2	210	60	150	131	HFS111SN-16A-150-ZYL-HA25-S	30026511
32,30 - 36,99	16	25	31,5	210	60	150	140	HFS111SN-16B-150-ZYL-HA25-S	30026512
37,00 - 41,19	20	25	36,2	210	60	150	140	HFS111SN-20A-150-ZYL-HA25-S	30026513
41,20 - 44,99	20	25	40,2	210	60	150	140	HFS111SN-20B-150-ZYL-HA25-S	30026514
45,00 - 65,00	24	32	44	266	60	206	195	HFS111SN-24-206-ZYL-HA32-S	30026515

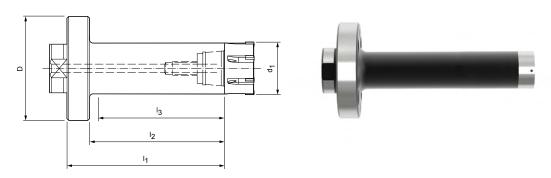
Kurze Ausführung mit Zylinderschaft

			Baumaße					Spezifikation	Bestell-Nr.
d ₁	HFS-Größe	d ₂ h6	d ₃	l ₁	l ₂	l ₃	l ₅		
16,60 - 19,39	10	20	16	99	50	49	33	HFS111SN-10A-049-ZYL-HA20-S	30026516
19,40 - 21,29	10	20	18,6	99	50	49	33	HFS111SN-10B-049-ZYL-HA20-S	30026521
21,30 - 24,99	12	20	20,5	117,5	50	67,5	51,5	HFS111SN-12-068-ZYL-HA20-S	30026522
25,00 - 28,99	14	25	24,2	150,5	60	90,5	71,5	HFS111SN-14-091-ZYL-HA25-S	30026523
29,00 - 32,29	16	25	28,2	149	60	89	70	HFS111SN-16A-089-ZYL-HA25-S	30026525
32,30 - 36,99	16	25	31,5	149	60	89	79	HFS111SN-16B-089-ZYL-HA25-S	30026526
37,00 - 41,19	20	25	36,2	149	60	89	79	HFS111SN-20A-089-ZYL-HA25-S	30026527
41,20 - 44,99	20	25	40,2	149	60	89	79	HFS111SN-20B-089-ZYL-HA25-S	30026528
45,00 - 65,00	24	32	44	167	60	107	96	HFS111SN-24-107-ZYL-HA32-S	30026529

MHC HydroChuck Seite 88		MHC	HydroChuck	Seite 88
-------------------------	--	-----	------------	----------

Mit Axialspannsystem mit Radial- und Winkelausrichtung Modul-Anschlussmaße nach MN 5000-14

Lange Ausführung mit Modulaufnahme (radial- und winkelausrichtbar)


		Baum	naße			Spezifikation	Bestell-Nr.
d ₁	HFS-Größe	D	I ₁	l ₂	l ₃		
15,60 - 18,59	10	60	81	68	61	HFS101SN-10-081-MOD-060-S	30010264
18,60 - 21,29	12	60	100,5	87,5	80,5	HFS101SN-12-101-MOD-060-S	30010265
21,30 - 23,99	14	60	101,5	88,5	79,5	HFS101SN-14-102-MOD-060-S	30010266
24,00 - 29,99	16	60	122	109	104	HFS101SN-16-122-MOD-060-S	30010267
30,00 - 39,99	20	60	121	108	103	HFS101SN-20-121-MOD-060-S	30010268
40,00 - 50,70	24	60	133	120	116	HFS101SN-24-133-MOD-060-S	30010269
50,71 - 65,00	24	80	133	116	112	HFS101SN-24-133-MOD-080-S	30190195

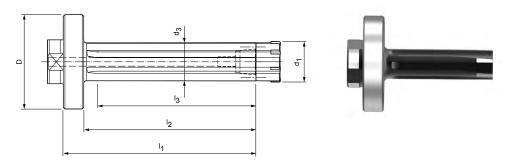
Ersatzteile für Modulaufnahme

Modul-Größe	Zylinder	schraube ISO 4762 (l	DIN 912)	Druck	stück	Gewindestift		
D				E				
	Benötigte Anzahl	Bestell-Nr.	Größe	Bestell-Nr.	Größe	Bestell-Nr.	Größe	
60	4	M5x16-12,9	10003601	10,6x5	10040108	M8x1x8	10040109	
80	4	M6x20-12,9	10003619	10,6x5	10040108	M8x1x11,5	10075074	

	OS-AD	Moduladapter	Seite 109
-11			

Mit Axialspannsystem mit Radial- und Winkelausrichtung Modul-Anschlussmaße nach MN 5000-14

Kurze Ausführung mit Modulaufnahme (radial- und winkelausrichtbar)


		Baum	naße			Spezifikation	Bestell-Nr.
d ₁	HFS-Größe	D	I ₁	l ₂	l ₃		
15,60 - 18,59	10	60	49	36	31	HFS101SN-10-049-MOD-060-S	30027896
18,60 - 21,29	12	60	58,5	45,5	40,5	HFS101SN-12-059-MOD-060-S	30027897
21,30 - 23,99	14	60	62,5	49,5	44,5	HFS101SN-14-063-MOD-060-S	30027898
24,00 - 29,99	16	60	72	59	54	HFS101SN-16-072-MOD-060-S	30027899
30,00 - 39,99	20	60	71	58	53	HFS101SN-20-071-MOD-060-S	30027900
40,00 - 50,70	24	60	84	71	66	HFS101SN-24-084-MOD-060-S	30027901
50,71 - 65,00	24	80	84	67	62	HFS101SN-24-084-MOD-080-S	30152510

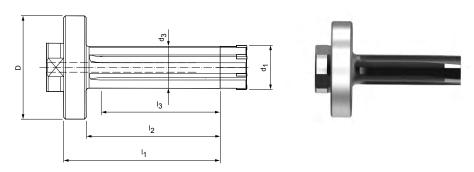
Ersatzteile für Modulaufnahme

Modul-Größe	Zylinder	schraube ISO 4762 (l	DIN 912)	Druck	stück	Gewindestift		
D				E				
	Benötigte Anzahl	Bestell-Nr.	Größe	Bestell-Nr.	Größe	Bestell-Nr.	Größe	
60	4	M5x16-12,9	10003601	10,6x5	10040108	M8x1x8	10040109	
80	4	M6x20-12,9	10003619	10,6x5	10040108	M8x1x11,5	10075074	

OS-AD	Moduladapter	Seite 109
-------	--------------	-----------

Mit Axialspannsystem mit Radial- und Winkelausrichtung Modul-Anschlussmaße nach MN 5000-14

Lange Ausführung mit Modulaufnahme (radial- und winkelausrichtbar)


		Ва	umaße				Spezifikation	Bestell-Nr.
d ₁	HFS-Größe	D	d ₃	l ₁	l ₂	l ₃		
16,60 - 19,39	10	60	16	81	68	48	HFS111SN-10A-081-MOD-060-S	30026562
19,40 - 21,29	10	60	18,6	81	68	48	HFS111SN-10B-081-MOD-060-S	30026563
21,30 - 24,99	12	60	20,5	101,5	88,5	69,5	HFS111SN-12-102-MOD-060-S	30026564
25,00 - 28,99	14	60	24,2	122,5	109,5	90,5	HFS111SN-14-123-MOD-060-S	30026565
29,00 - 32,29	16	60	28,2	121	108	89	HFS111SN-16A-121-MOD-060-S	30026566
32,30 - 36,99	16	60	31,5	121	108	89	HFS111SN-16B-121-MOD-060-S	30026567
37,00 - 41,19	20	60	36,2	121	108	89	HFS111SN-20A-121-MOD-060-S	30026568
41,20 - 44,99	20	60	40,2	121	108	89	HFS111SN-20B-121-MOD-060-S	30026569
45,00 - 50,70	24	60	44	123	110	95	HFS111SN-24-123-MOD-060-S	30026570
50,71 - 65,00	24	80	44	133	116	110	HFS111SN-24-133-MOD-080-S	30193167

Ersatzteile für Modulaufnahme

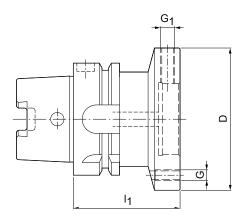
Modul-Größe	Zylinder	schraube ISO 4762 (l	DIN 912)	Druck	stück	Gewindestift		
D				E				
	Benötigte Anzahl	Bestell-Nr.	Größe	Bestell-Nr.	Größe	Bestell-Nr.	Größe	
60	4	M5x16-12,9	10003601	10,6x5	10040108	M8x1x8	10040109	
80	4	M6x20-12,9	10003619	10,6x5	10040108	M8x1x11,5	10075074	

OS-AD Moduladapter Seite

Mit Axialspannsystem mit Radial- und Winkelausrichtung Modul-Anschlussmaße nach MN 5000-14

Kurze Ausführung mit Modulaufnahme (radial- und winkelausrichtbar)

Baumaße						Spezifikation	Bestell-Nr.	
d ₁	HFS-Größe	D	d ₃	l ₁	l ₂	l ₃		
16,60 - 19,39	10	60	16	49	36	31	HFS111SN-10A-049-MOD-060-S	30027885
19,40 - 21,29	10	60	18,6	59	46	41	HFS111SN-10B-059-MOD-060-S	30027886
21,30 - 24,99	12	60	20,5	62,5	49,5	44,5	HFS111SN-12-063-MOD-060-S	30027887
25,00 - 28,99	14	60	24,2	72,5	59,5	54,5	HFS111SN-14-073-MOD-060-S	30027888
29,00 - 32,29	16	60	28,2	71	58	53	HFS111SN-16A-071-MOD-060-S	30027889
32,30 - 36,99	16	60	31,5	71	58	53	HFS111SN-16B-071-MOD-060-S	30027890
37,00 - 41,19	20	60	36,2	71	58	53	HFS111SN-20A-071-MOD-060-S	30027891
41,20 - 44,99	20	60	40,2	81	68	63	HFS111SN-20B-081-MOD-060-S	30027892
45,00 - 50,70	24	60	44	84	71	66	HFS111SN-24-084-MOD-060-S	30027893
50,71 - 65,00	24	80	44	84	67	64	HFS111SN-24-084-MOD-080-S	30193168

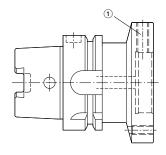

Ersatzteile für Modulaufnahme

Modul-Größe	Zylinder	schraube ISO 4762 (l	DIN 912)	Druck	stück	Gewindestift	
D)		E			
	Benötigte Anzahl	Bestell-Nr.	Größe	Bestell-Nr.	Größe	Bestell-Nr.	Größe
60	4	M5x16-12,9	10003601	10,6x5	10040108	M8x1x8	10040109
80	4	M6x20-12,9	10003619	10,6x5	10040108	M8x1x11,5	10075074

OS-AD	Moduladapter	Seite 109

HSK-Adapter

Schaft HSK-A nach DIN 69893-1



HSK-A	Modul-Größe		Baumaße		Spezifikation	Bestell-Nr.
	D	I ₁	G	G ₁		
40	60	60	M5	M8x1	OS-AD-HSK-A050-MOD060-060-11	30344525
50	60	60	M5	M8x1	OS-AD-HSK-A050-MOD060-060-11	30319384
50	70	60	M6	M8x1	OS-AD-HSK-A050-MOD070-060-11	30319385
50	80	60	M6	M8x1	OS-AD-HSK-A050-MOD080-060-11	30319386
63	60	60	M5	M8x1	OS-AD-HSK-A063-MOD060-060-11	30319387
63	70	60	M6	M8x1	OS-AD-HSK-A063-MOD070-060-11	30319388
63	80	60	M6	M8x1	OS-AD-HSK-A063-MOD080-060-11	30319389
63	100	65	M8	M10x1	OS-AD-HSK-A063-MOD100-065-11	30319390
63	117	65	M8	M10x1	OS-AD-HSK-A063-MOD117-065-11	30319391
80	60	50	M5	M8x1	OS-AD-HSK-A080-MOD060-050-11	30319392
80	70	60	M6	M8x1	OS-AD-HSK-A080-MOD070-060-11	30319393
80	80	60	M6	M8x1	OS-AD-HSK-A080-MOD080-060-11	30319394
80	100	65	M8	M10x1	OS-AD-HSK-A080-MOD100-065-11	30319395
80	117	65	M8	M10x1	OS-AD-HSK-A080-MOD117-065-11	30319396
80	140	75	M10	M10x1	OS-AD-HSK-A080-MOD140-075-11	30319397
100	60	55	M5	M8x1	OS-AD-HSK-A100-MOD060-055-11	30319398
100	70	55	M6	M8x1	OS-AD-HSK-A100-MOD070-055-11	30319399
100	80	55	M6	M8x1	OS-AD-HSK-A100-MOD080-055-11	30319400
100	100	65	M8	M10x1	OS-AD-HSK-A100-MOD100-065-11	30319401
100	117	65	M8	M10x1	OS-AD-HSK-A100-MOD117-065-11	30319402
100	140	75	M10	M10x1	OS-AD-HSK-A100-MOD140-075-11	30319403

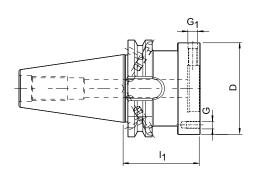
Ersatzteile

Modul-Größe D	Modul-Größe D Benötigte Anzahl		① Gewindestift			
	AllZalli	Größe		Bestell-Nr.		
60 - 80	4	M8x1x16		10075355		
100 - 140	4	M10x1x20	K2865-34	10075099		

Maßangaben in mm.

Verwendung: Für den Einsatz in der Maschinenspindel zur Aufnahme von KS-Vorsatzflansch, Schrumpffutter, Hydrodehnspannfutter, Spannfutter für Zylinderschäfte oder Werkzeugen mit Modul-Schaft nach MAPAL Werksnorm.

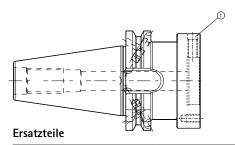
Ausführung: Durch Gewindestifte ist der Rundlauf einer eingebauten Aufnahme oder eines Werkzeugs zum Kegelhohlschaft einstellbar.


Lieferumfang: Mit Gewindestiften zum Ausrichten des Rundlaufs, ohne Kühlmittelrohr.

Hinweis: Kühlmittelrohr, Codeträger und Hinweise zur Verwechselsicherung siehe

Katalog "SPANNEN".

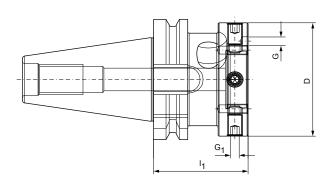
Wuchtgüte: G 2,5 bei 16.000 min⁻¹ im Auslieferungszustand.


Schaft SK nach ISO 7388-1 Form AD/AF

SK	Modul-Größe D	I ₁	G	G ₁	Form	Spezifikation	Bestell-Nr.
30*	60	50	M5	M8x1	AD	OS-AD-SK030-MOD060-050-11	30319771
30*	60	50	M5	M8x1	AF	OS-AD-SK030-MOD060-050-12	30319772
30*	70	50	M6	M8x1	AD	OS-AD-SK030-M0D070-050-11	30319773
30*	70	50	M6	M8x1	AF	OS-AD-SK030-MOD070-050-12	30319774
40	60	50	M5	M8x1	AD/AF	OS-AD-SK040-MOD060-050-13	10058658
40	70	50	M6	M8x1	AD/AF	OS-AD-SK040-MOD070-050-13	10058660
40	80	55	M6	M8x1	AD/AF	OS-AD-SK040-MOD080-055-13	10058661
40	100	60	M8	M10x1	AD/AF	OS-AD-SK040-MOD100-060-13	10058662
50	60	50	M5	M8x1	AD/AF	OS-AD-SK050-MOD060-050-13	10058669
50	70	50	M6	M8x1	AD/AF	OS-AD-SK050-MOD070-050-13	10058670
50	80	50	M6	M8x1	AD/AF	OS-AD-SK050-MOD080-050-13	10058671
50	100	60	M8	M10x1	AD/AF	OS-AD-SK050-MOD100-060-13	10058672
50	117	60	M8	M10x1	AD/AF	OS-AD-SK050-MOD117-060-13	10058673
50	140	60	M10	M10x1	AD/AF	OS-AD-SK050-MOD140-060-13	10058675

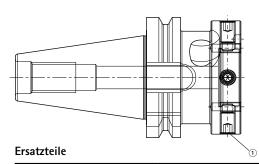
^{*} Steilkegelgröße SK30 ist nicht in Kombi-Ausführung AD/AF erhältlich.

Modul-Größe D	Benötigte Anzahl	Größe	① Gewindestift Bestell-Nr.
60 - 80	4	M8 x1x16	10075355
100 - 140	4	M10x1x20	10075099


Maßangaben in mm.

Verwendung: Für den Einsatz in der Maschinenspindel zur Aufnahme von KS-Vorsatzflansch, Schrumpffutter, Hydrodehnspannfutter, Spannfutter für Zylinderschäfte oder Werkzeugen mit Modul-Schaft nach MAPAL Werksnorm.

Ausführung: Durch Gewindestifte ist der Rundlauf einer eingebauten Aufnahme oder eines Werkzeugs zum Kegelschaft einstellbar. Grundeinstellung Form AD, falls Form AF gewünscht wird, bitte bei der Bestellung angeben.

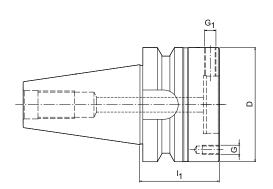

Lieferumfang: Mit Gewindestiften zum Ausrichten des Rundlaufs, ohne Anzugsbolzen. Hinweis: Kühlmittelrohr und Verwechselsicherung siehe Katalog "SPANNEN". Wuchtgüte: G 6,3 bei 3.000 min⁻¹ im Auslieferungszustand.

Form AD ähnlich ISO 7388-1, mit Plananlage

SK-FC	Modul-Größe D	I ₁	G	G ₁	Spezifikation	Bestell-Nr.
30	60	50	M5	M8x1	OS-AD-AD-FC030-MOD060-050-11	30630793
30	70	50	M6	M8x1	OS-AD-AD-FC030-MOD070-050-11	30630794
40	60	50	M5	M8x1	OS-AD-AD-FC040-MOD060-050-11	30630796
40	70	50	M6	M8x1	OS-AD-AD-FC040-MOD070-050-11	30630797
40	80	55	M6	M8x1	OS-AD-AD-FC040-MOD080-055-11	30630798
40	100	60	M8	M10x1	OS-AD-AD-FC040-MOD100-060-11	30630799
50	60	50	M5	M8x1	OS-AD-AD-FC050-MOD060-050-11	30630800
50	70	50	M6	M8x1	OS-AD-AD-FC050-MOD070-050-11	30630801
50	80	50	M6	M8x1	OS-AD-AD-FC050-MOD080-050-11	30630802
50	100	60	M8	M10x1	OS-AD-AD-FC050-MOD100-060-11	30630803
50	117	60	M8	M10x1	OS-AD-AD-FC050-MOD117-060-11	30630804
50	140	60	M10	M10x1	OS-AD-AD-FC050-MOD140-060-11	30630805

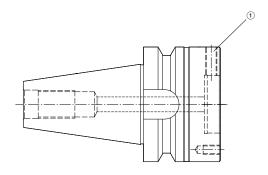
Modul-Größe D	Benötigte Anzahl	Größe	① Gewindestift Bestell-Nr.
60 - 80	4	M8x1x16	10075355
100 - 140	4	M10x1x20	10075099

Maßangaben in mm.


Verwendung: Für den Einsatz in der Maschinenspindel zur Aufnahme von KS-Vorsatzflansch, Schrumpffutter, Hydrodehnspannfutter, Spannfutter für Zylinderschäfte oder Werkzeugen mit Modul-Schaft nach MAPAL Werksnorm.

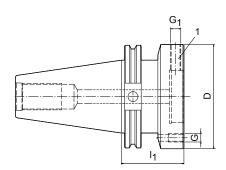
Ausführung: Durch Gewindestifte ist der Rundlauf einer eingebauten Aufnahme oder eines Werkzeugs zum Kegelschaft einstellbar. Grundeinstellung Form AD, falls Form AF gewünscht wird, bitte bei der Bestellung angeben.

Lieferumfang: Mit Gewindestiften zum Ausrichten des Rundlaufs, ohne Anzugsbolzen. Hinweis: Kühlmittelrohr, Codeträger und Hinweise zur Verwechselsicherung siehe Katalog "SPANNEN".


Wuchtgüte: G 6,3 bei 3.000 min⁻¹ im Auslieferungszustand.

Schaft BT nach ISO 7388-2 Form JD (JIS B 6339)

BT	Modul-Größe		Baumaße		Spezifikation	Bestell-Nr.
	D	I ₁	G	G ₁		
30	60	40	M5	M8x1	OS-AD-BT030-MOD060-040-11	30320084
30	70	40	M6	M8x1	OS-AD-BT030-MOD070-040-11	30320085
40	60	55	M5	M8x1	OS-AD-BT040-MOD060-055-11	30320086
40	70	55	M6	M8x1	OS-AD-BT040-M0D070-055-11	30320087
40	80	65	M6	M8x1	OS-AD-BT040-MOD080-065-11	30320088
40	100	70	M8	M10x1	OS-AD-BT040-MOD100-070-11	30320089
50	60	70	M5	M8x1	OS-AD-BT050-MOD060-070-11	30320095
50	70	70	M6	M8x1	OS-AD-BT050-MOD070-070-11	30320096
50	80	70	M6	M8x1	OS-AD-BT050-MOD080-070-11	30320097
50	100	70	M8	M10x1	OS-AD-BT050-MOD100-070-11	30320098
50	117	80	M8	M10x1	OS-AD-BT050-MOD117-080-11	30320099
50	140	80	M10	M10x1	OS-AD-BT050-MOD140-080-11	30320100

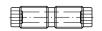


Ersatzteile

Modul-Größe D	Benötigte Anzahl	Größe	① Gewindestift Bestell-Nr.
60 - 80	4	M8x1x16	10075355
100	4	M10x1x20	10075099
117	4	M10x1x20	10075099
140	4	M10x1x20	10075099

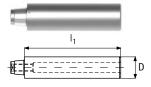
Maßangaben in mm.

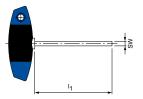
Schaft "CAT" nach ASME B5.50-1994



CAT			Baumaße		Spezifikation	Bestell-Nr.
	D	I ₁	G	G ₁		
30	60	50	M5	M8x1	OS-AD-CAT030-MOD060-050-11	30320124
30	70	50	M6	M8x1	OS-AD-CAT030-M0D070-050-11	30320125
40	60	50	M5	M8x1	OS-AD-CAT040-MOD060-050-11	30320126
40	70	50	M6	M8x1	OS-AD-CAT040-MOD070-050-11	30320127
40	80	55	M6	M8x1	OS-AD-CAT040-MOD080-055-11	30320128
40	100	60	M8	M10x1	OS-AD-CAT040-MOD100-060-11	30320129
50	60	50	M5	M8x1	OS-AD-CAT050-MOD060-050-11	30320135
50	70	50	M6	M8x1	OS-AD-CAT050-MOD070-050-11	30320136
50	80	50	M6	M8x1	OS-AD-CAT050-MOD080-050-11	30320137
50	100	60	M8	M10x1	OS-AD-CAT050-MOD100-060-11	30320138
50	117	60	M8	M10x1	OS-AD-CAT050-MOD117-060-11	30320139
50	140	60	M10	M10x1	OS-AD-CAT050-MOD140-060-11	30320140

Ersatzteile und Zubehör HFS-System




Gewindespindel für Axialspannsystem

HFS-Größe	Ohne Kühlmitteldurchgang Gewindespindel MN 618 Bestell-Nr.	Mit Kühlmitteldurchgang Gewindespindel MN 618 Bestell-Nr.
10	10024720	10025194
12	10024721	10025195
14	10024721	10025195
16	10024722	10025196
20	10024722	10025196
24	10024723	10025198

Prüfdorne (Ausrichthilfe)

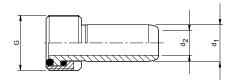
HFS-Größe	I ₁	D	Bestell-Nr.
10	70	15	30036468
12	80	20	30036469
14	80	20,5	30036470
16	80	23,2	30036471
20	80	29,3	30036472
24	80	39	30036473

Schraubendreher mit Quergriff

HFS-Größe	Kurze Au	sführung	Lange Ausführung		
	Größe Bestell-Nr.		Größe	Bestell-Nr.	
10	SW2,5 x 100	10006233	SW2,5 x 200	10032722	
12	SW3 x 100	10006234	SW3 x 200	10025313	
14	SW3 x 100	10006234	SW3 x 200	10025313	
16	SW4 x 100	10006235	SW4 x 200	10018010	
20	SW4 x 100	10006235	SW4 x 200	10018010	
24	SW5 x 100	10006236	SW5 x 200	10013350	

Kegelwischer für HFS-Innenkegel

HFS-Größe	Bestell-Nr.
10	10029989
12	10029990
14	10030002
16	10030003
20	10030004
24	10030005


Drehmomentschlüssel, Klingen und Sechskant-Einsätze

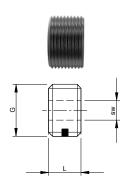
HFS-	SW	Drehmomentschlüssel				Klingen und Sechskant-Einsätze für Drehmomentschlüssel			
Größe		Drehmoment	Ausführung	Antrieb	Bestell-Nr.	I [mm]	I ₁ [mm]	Antrieb	Bestell-Nr.
10	2.5	4 Nm	fest – mit Klinge	-	10044842	175	70	Klinge	10044839
12	3	6 Nm	einstellbar - ohne Einsatz	1/4"	10040125	55	30	Einsatz 1/4"	10040122
14	3	6 Nm	einstellbar - ohne Einsatz	1/4"	10040125	55	30	Einsatz 1/4"	10040122
16	4	15 Nm	einstellbar - ohne Einsatz	3/8"	10040126	60	35	Einsatz 3/8"	10040123
20	4	15 Nm	einstellbar - ohne Einsatz	3/8"	10040126	60	35	Einsatz 3/8"	10040123
24	5	20 Nm	einstellbar - ohne Einsatz	3/8"	10040126	70	45	Einsatz 3/8"	10040124

Drehmomentschlüssel und Sechskant-Einsätze erst ab HFS-Größe 12 bzw. SW 3.

Ersatzteile und Zubehör HSK-A 63

Kühlmittelrohre nach DIN 69895

HSK		Baumaße	Bestell-Nr.	
	G	d ₁	d ₂	
63	M18x1	12	8	30326006
100	M24x1,5	16	12	30326008

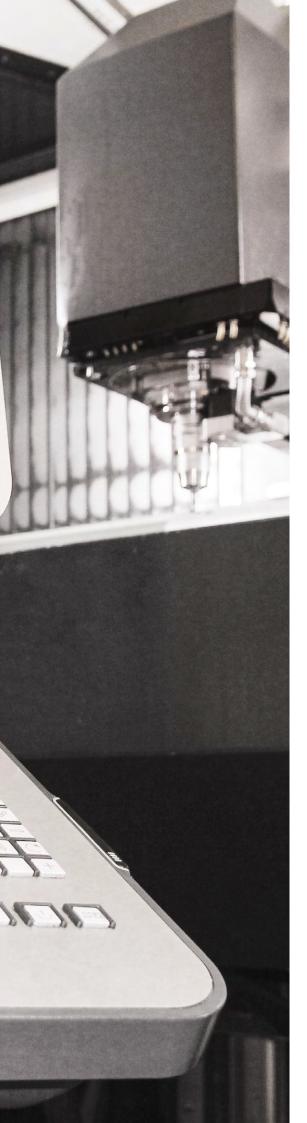

Lieferumfang: Kühlmittelrohr mit zwei O-Ringen und Überwurfmutter. Ausführung: Leichtgängige Winkelbeweglichkeit 1° selbstzentrierend, axial abgedichtet. Hinweis: Ausgeführt entsprechend DIN 69895. Dichtheit getestet bis 80 bar.

Montageschlüssel

HSK	d ₁	Für Blindstopfen/Adapterrohr der KS-Spannpatronen für MMS-Anwendungen		
		Spezifikation	Bestell-Nr.	
63	17	MAT-HSK-A063-1	10040110	
100	22	MAT-HSK-A100-1	10074775	

Verwendung: Zur Montage und Demontage von Kühlmittelrohren.

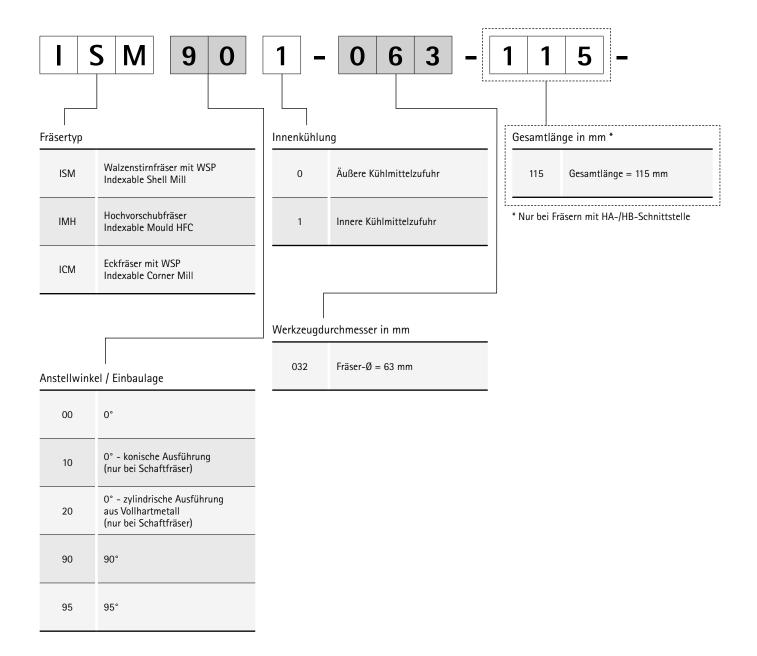
Blindschrauben

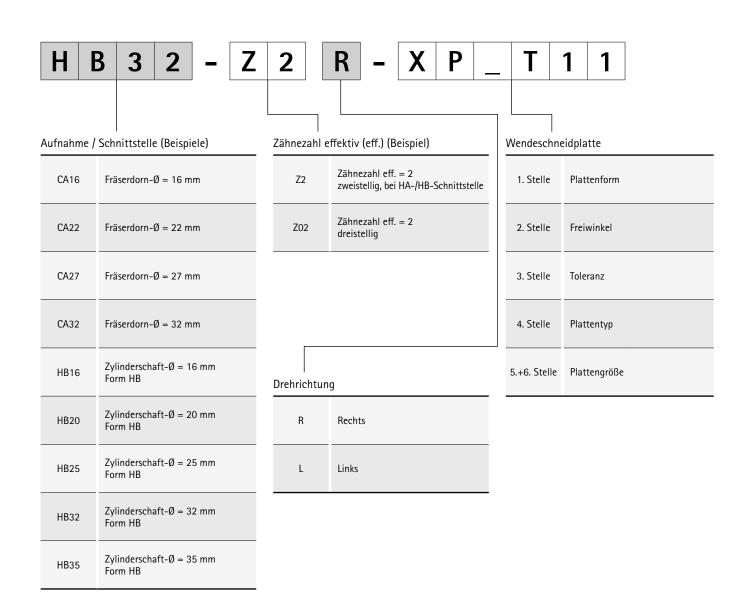

HSK		Baumaße	Bestell-Nr.	
	G	L	SW	
63	M18x1	11,5	8	30326078
100	M24x1,5	15,5	12	30326074

Verwendung: Zum Verschließen der Gewindebohrung in HSK-Werkzeugschäften, wenn kein Kühlmittelrohr zum Einsatz kommt.

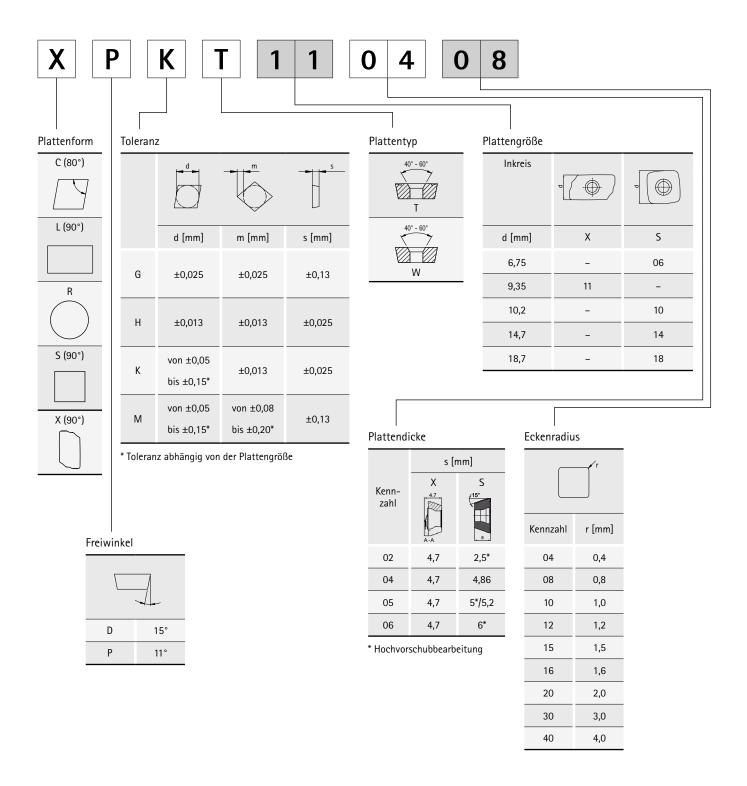
Ausführung: Mit Nylok-Einsatz zur Schraubensicherung.

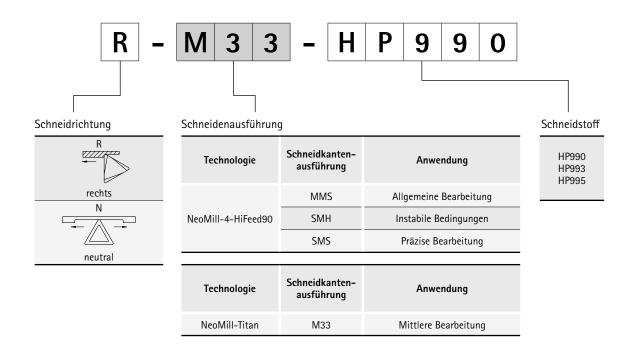
Werkstoff: Rostbeständiger Stahl.

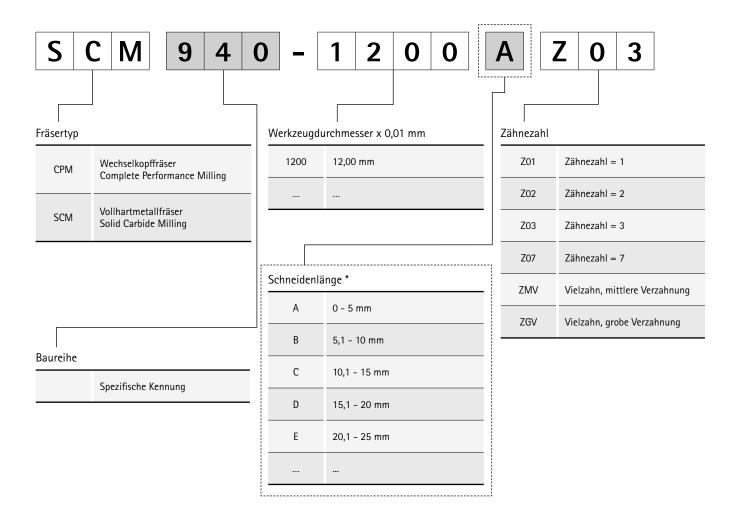



TECHNISCHER ANHANG

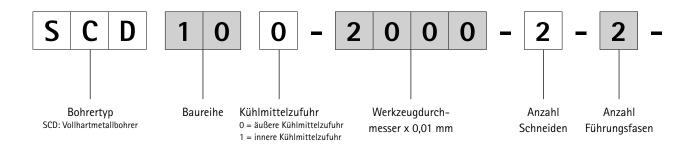
Bezeichnungsschlüssel


Fräsen	_
Fräsen mit Wendeschneidplatten	118
Radial-Wendeschneidplatten	120
Vollhartmetall- und Wechselkopffräser	122
Bohren	_
Vollhartmetallbohrer	122
Reiben und Feinbohren	_
FixReam-Reibahlen	124
HPR-Wechselkopfreibahlen	124
Spannen	_
Spannfutter	126
MFS-Fräskopfhalter	128
HFS-Wechselkopfhalter	130
Anwendungshinweise	
Fräsen	
Zweiachsiges Schrägeintauchen	132
Trochoides Fräsen	134
Handhabungshinweise	
Spannen	
Hydrodehnspannfutter	136
KS-Vorsatzflansch	137
Flächenspannfutter MillChuck, HB	138
Piktogramme	
Piktogramme	140

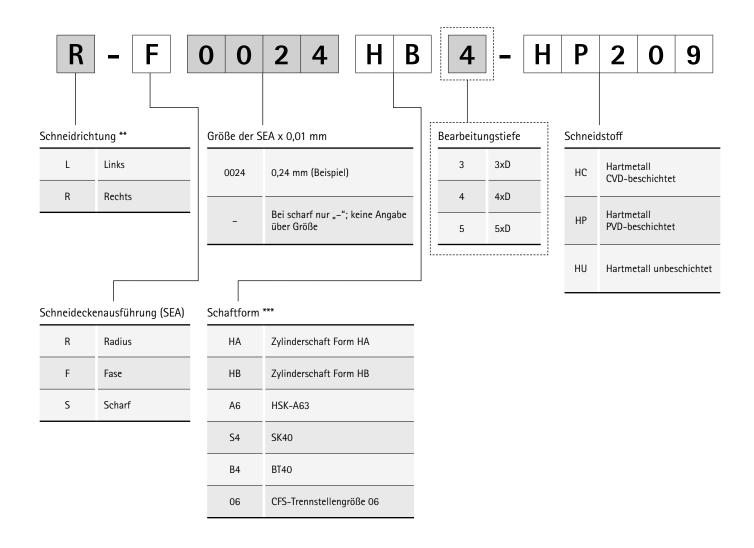

Bezeichnungsschlüssel Fräser mit Wendeschneidplatten

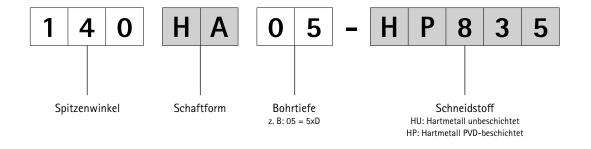


Bezeichnungsschlüssel Radial-Wendeschneidplatten

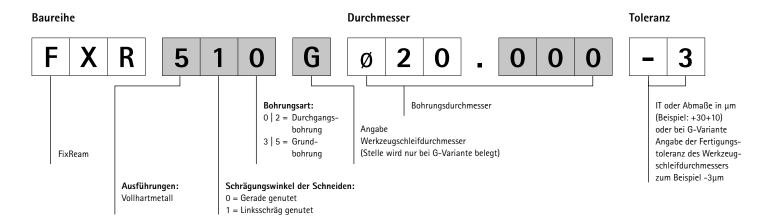


Bezeichnungsschlüssel Vollhartmetall- und Wechselkopffräser

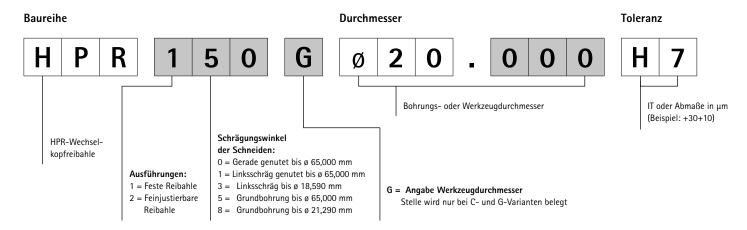

Bezeichnungsschlüssel Vollhartmetallbohrer



Nur bei Fräsertyp SHM


^{**} Angabe entfällt bei Fräsertyp CPM

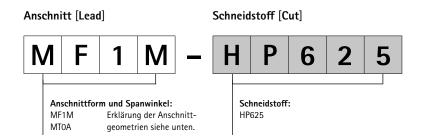
^{***} Bei Fräsertyp CPM entspricht Schaftform der CFS-Trennstellengröße

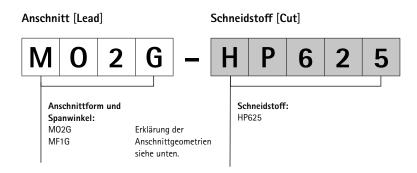


Bezeichnungsschlüssel FixReam-Reibahlen

Bezeichnungsschlüssel HPR-Wechselkopfreibahlen

Anschnittgeometrien und Spanwinkel Mehrschneidenreibahle

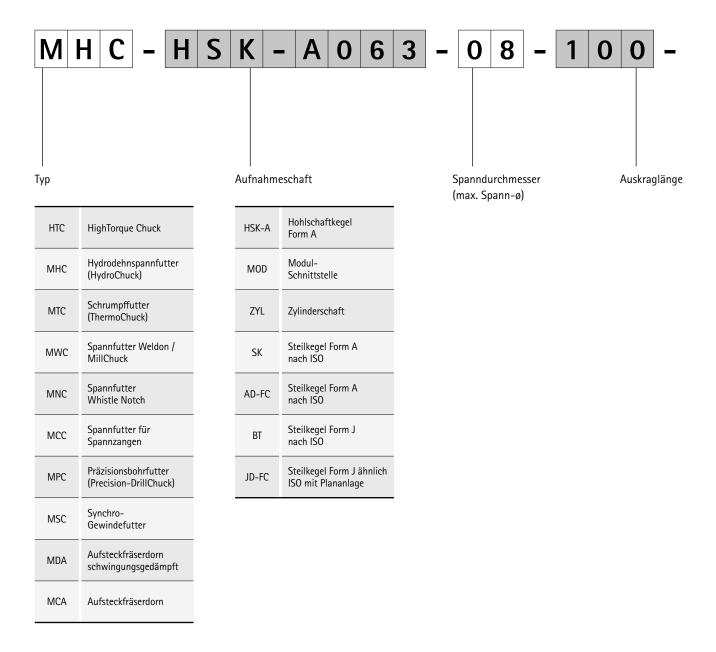

Baureihe FXR, HPR


Anschnitt

Geometrie	Anschnittgeometrie		
	Bezeichnung	Geometrie	
30°	MF	30°	
45°	МО	45°	
80°	MT	60°	

Spanform/Spanwinkel

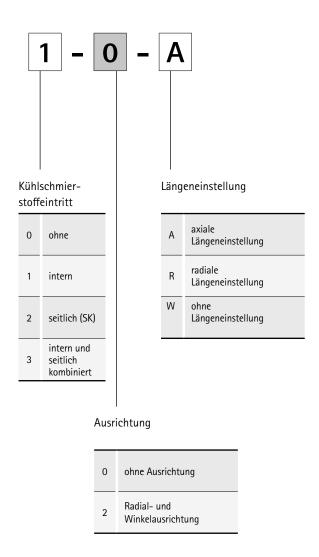
Spanwinkel				
Bezeichnung	Winkel			
OA	0°			
1G	6°			
1M	13°			
2G	6° (für Grundbohrung)			



Übersicht Baureihe | Durchmesserbereich | Anschnittbezeichnung | Anschnittlänge

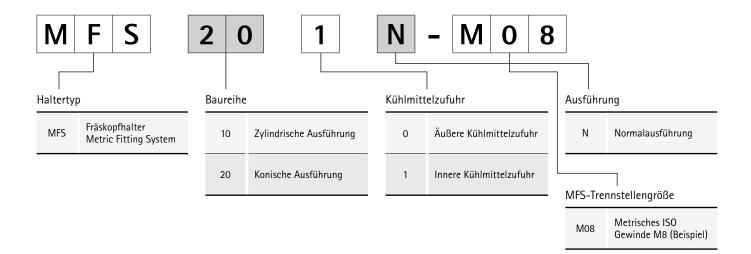
Baureihe	Anschnitt- bezeichnung	Durchmesser- bereich	Anschnitt- länge x
		3,701 - 6,200	0,90
	MF	MF 6,210 - 12,200	
		12,210 - 20,200	1,50
FXR	MT	3,701 - 6,200	0,30
		6,210 - 10,700	0,40
	IVII	10,710 - 16,200	0,50
		16,210 - 20,200	0,60

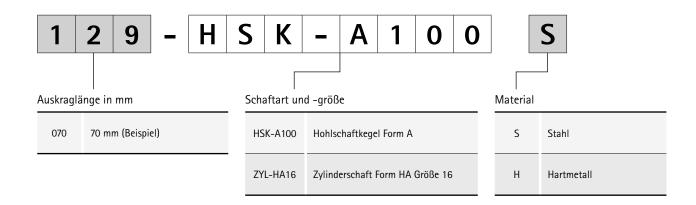
Baureihe	Anschnitt- bezeichnung	Durchmesser- bereich	Anschnitt- länge x
HPR	MF	7,00 - 65,00	1,40
HFN	MO	7,00 - 65,00	0,60


Bezeichnungsschlüssel Spannfutter

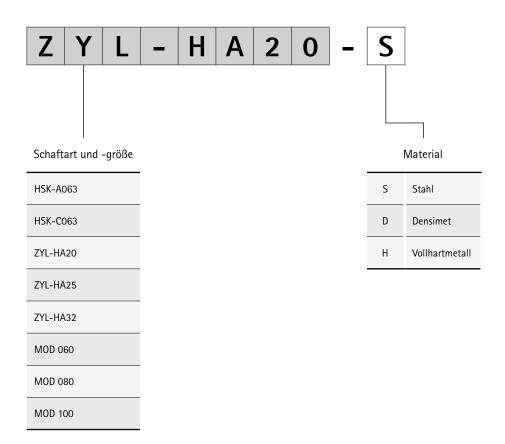
Folgende Konfigurationen sind möglich:

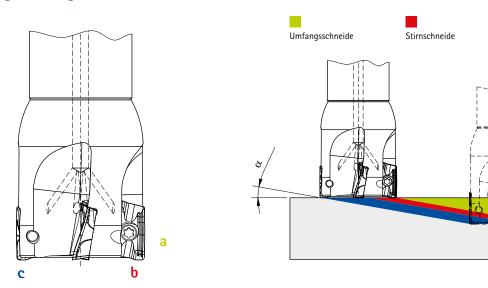
VS: Verwechselsicherung FB: Feingewuchtet FAS: Fräseranzugsschraube


BC: Chipversion CT: Kühlmittelrohr



Ausführungen mit Codeträger


Bezeichnungsschlüssel MFS-Fräskopfhalter


Bezeichnungsschlüssel HFS-Wechselkopfhalter

Anwendungshinweise Fräsen – Zweiachsiges Schrägeintauchen

Zweiachsiges Schrägeintauchen – linear (Vollnut)

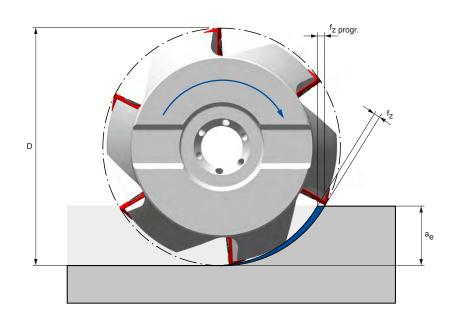
Innenliegende Schneide (nacheilend)

Rampenwinkel α :

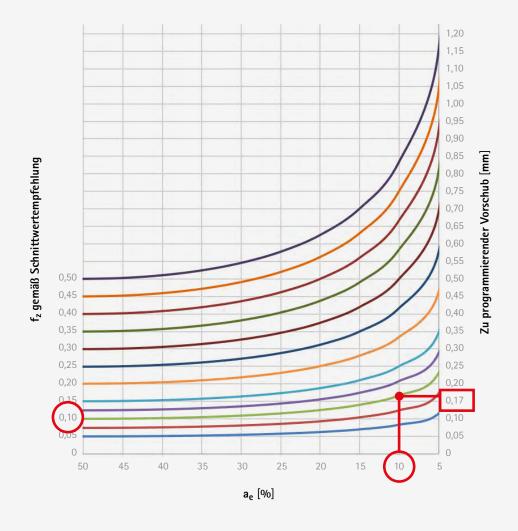
Der maximale Eintauchwinkel α ist vom Werkzeug abhängig.

Beim zweiachsigen Schrägeintauchen laufen verschiedene Zerpanungsprozesse gleichzeitig ab:

- a) Zerspanung am gesamten Umfang des Werkzeugs (periphere Zerspanung) mit vorauseilender Wendeplatte.
- b) Zerspanung an der Stirnseite des Fräsers mit vorauseilender Wendeplatte.
- c) Zerspanung an der Stirnseite des Fräsers mit nacheilender Wendeplatte.


Maximaler Eintauchwinkel für NeoMill-Fräser

Tauchfräsen	Fräserdurchmesser	Maximaler Eintauchwinkel [°]				
	[mm]	XPKT11	SDMT06	SDMT10	SDMT14	SDMT18
	16	-	9	-	-	-
	20	-	4,8	-	-	-
	25	-	3	4,4	-	-
	32	4	2	2,9	-	-
	35	-	1,7	-	-	-
├ ~	40	3	-	2	-	-
α	50	2,2	-	1,5	2,4	-
	52	-	-	1,1	1,7	-
	63	1,7	-	1,1	1,7	-
	66	-	-	0,8	1,3	-
	80	1,3	-	0,8	1,3	2,5
	100	1	-	-	1	2
	125		-	-	0,7	1,6
	160	_	-	_	_	1,3
	200	-	_	_	_	1


Vorschubwerte Kompensation

Arbeitsgänge mit geringer radialer Schnitttiefe, wie das Fräsen einer Schulter, erfordern eine Korrektur des Vorschubs an der Schneide beim Eintritt in das Werkstück.

Der empfohlene Vorschub pro Zahn f_z variiert je nach Fräserdurchmesser und Arbeitseingriff, also dem radialen Eingriffsverhältnis des Fräsers a_e/D . Wenn dieser kleiner als 50 Prozent ist, verringert sich die maximale Spandicke relativ zum Vorschub f_z . Der Vorschub kann mit Hilfe des Korrekturfaktors im nachfolgenden Diagramm, je nach a_e/D -Verhältnis, erhöht werden.

Vorschubwerte Kompensation

Beispiel:

D = 20 mm

 $a_e = 2 \text{ mm}$

 $f_z = 0.1 \text{ mm/Zahn}$

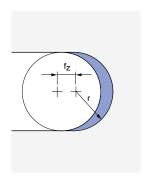
 $a_e/D = 10 \%$

 $f_{z progr.} = 0,17 \text{ mm/Zahn}$

Anwendungshinweise Fräsen – Trochoides Fräsen – Grundlagen

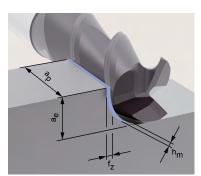
Definition

Das trochoide Fräsen ist eine Frässtrategie mit dem Ziel die Prozesskräfte zu senken und gleichzeitig die Zeitspanvolumina zu steigern. Durch eine Überlagerung der Vorschubbewegung mit einer Kreisbewegung des Werkzeugs können die Eingriffsbedingungen positiv beeinflusst werden. Es kommt zu einem zyklischen Materialabtrag mit veränderlichen und auf den Werkzeugeinsatz abstimmbaren Eingriffsbedingungen sowie variablen Spanungsbreiten entlang der Kreisbahn des Werkzeugs.



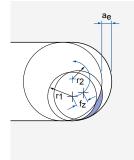
Beispiel Vollnutfräsen

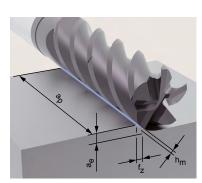
Konventionelles Fräsen


Bei einer Schruppbearbeitung im Vollschnitt sind die Eingriffsbedingungen des Fräsers auf einen Umschlingungswinkel von 180° festgelegt.

Dieser führt neben der Erzeugung langer Späne aufgrund des langen Zahneingriffs zu einer vergleichsweise hohen thermischen Belastung des Werkzeugs. Der daraus resultierende große Spanungsquerschnitt hat wiederum hohe Zerspankräfte zur Folge, wodurch prozessstabile Zustelltiefen, Vorschübe und Schnittgeschwindigkeiten limitiert sind.

 a_p : klein (Schnitttiefe ~1xD)


a_e: groß (1xD)f_z: kleinv_c: niedrig



Trochoides Fräsen

Die spezifische Kinematik des trochoiden Fräsens ermöglicht es, aufgrund einer Überlagerung der Vorschubbewegung mit einer Kreisbewegung des Werkzeugs, die Eingriffsbedingungen positiv zu beeinflussen. Der Eingriffswinkel ist entsprechend gering.

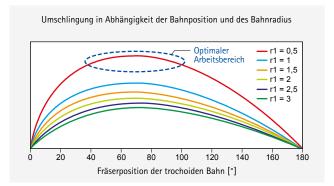
Dieser Technologieansatz hat zur Folge, dass eine verringerte Spanungsbreite und Schnittlänge zu deutlich reduzierten Prozesskräften führen. Hierdurch ist es wiederum möglich, größere Schnitttiefen zu realisieren.

 a_p : groß (Volle Ausnutzung der Schneidenlänge möglich)

a_e: kleinf_z: großv_c: hoch

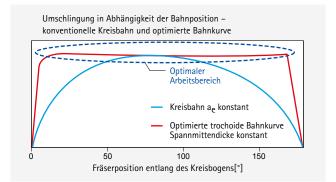
Trochoides Fräsen – im Detail

Trochoides Fräsen - Kreisbahn


Für den Fall einer Kreisbahn mit konstantem Radius variieren die Umschlingungswinkel an der eingreifenden Werkzeugschneide je nach absoluter radialer Zustellung innerhalb einer Umdrehung.

- Eingriffsbedingungen ändern sich ständig
- optimaler Arbeitsbereich des Fräsers
- begrenzt auf einen kleinen Bereich
- geringes Spanvolumen
- erhöhte Schwingungsneigung
- erhöhter Werkzeugverschleiß

Umschlingung in Abhängigkeit der Bahnposition


Trochoides Fräsen -**Optimierte Bahnkurve**

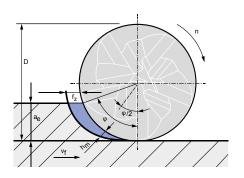
Durch eine angepasste Bahnbewegung des Werkzeugs können die Eingriffsverhältnisse des Fräsers in jedem Punkt der Bahn über nahezu die gesamte Bearbeitung konstant gehalten werden. Somit kann der Fräsprozess stets am Optimum betrieben werden. Innerhalb einer Bahn wird der Vorschub so angepasst, dass die Spanmittendicke konstant bleibt.

- konstante Eingriffsbedingungen
- konstantes Kraftniveau
- geringerer Werkzeugverschleiß
- maximales Zeitspanvolumen

Umschlingung in Abhängigkeit der Bahnposition Optimierte Bahnkurve

Vorschubbewegung -**Optimierter Luftschnitt**

Für eine ganzheitliche Prozessoptimierung müssen neben der Werkzeugbahn während des Eingriffs auch die Verfahrbewegungen im Luftschnitt betrachtet werden. Ziel ist es, nach dem Austritt des Fräsers aus dem Material eine möglichst rasche Bewegung zum nächsten Eintrittspunkt zu realisieren. Da die Ausführung einer Kreisbahn an dieser Stelle nicht von Vorteil ist, wird in Abhängigkeit der Dynamik der Maschine ein möglichst direkter Anfahrweg gewählt.


Rampe Eilgang

HINWEISE

- Das trochoide Fräsen setzt neben einem modernen CAM-System oder einer modernen Maschinensteuerung auch ein möglichst dynamisches Bearbeitungszentrum voraus.
- Die volle Leistungsfähigkeit wird durch die Verwendung von OptiMill-Fräsern der Trochoid-Baureihe erreicht.

Spanmittendicke h_m und Eingriffwinkel φ

Eingriffswinkel $\varphi = [^{\circ}]$	$\cos \varphi = 1 - \frac{2 \cdot a_e}{D}$	lst abhängig vom Eingriffsverhältnis a _e /D und wird je nach Werkstoff begrenzt.
Spanmittendicke h _{m =} [mm]	$h_m = f_z \cdot \sqrt{\frac{a_e}{D}}$	Wird beim trochoiden Fräsen durch dynamische Vorschübe nahezu konstant gehalten. Die Spanmittendicke wird bei φ/2 gemessen.
Vorschub $f_z = \frac{[mm]}{Zahn}$		Eingeschränkte Variable, wird während der Bearbeitung durch CAM-System angepasst.
Eingriffsbreite $a_e = [mm]$		Wird ständig von der CAM-Software neu berechnet und begrenzt den Eingriffswinkel ϕ .
Werkzeug- durchmesser D = [mm]		

Handhabungshinweise Spannen – Hydrodehnspannfutter

Prüfung der Mindestumdrehungen

Abbildung 1: Spannschraube und Werkzeugprüfling drehen.

(für mehr Informationen siehe Kurzanleitung des entsprechenden Hydrodehnspannfutters). 2. Werkzeugprüfling in das zu prüfende Spannfutter einsetzen.

1. Werkzeugprüfling und Aufnahmebohrung reinigen und entfetten

- 3. Spannschraube so lange mit einem Innensechskantschlüssel drehen, bis sich der Werkzeugprüfling im Spannfutter nicht mehr von Hand drehen lässt (siehe Abbildung 1).
- 4. Spannschraube bis zum Anschlag mit einem Innensechskantschlüssel anziehen und dabei die Mindestumdrehungen - siehe Bedienungsanleitung - beachten.

Spannschraube anziehen und Mindestumdrehungen beachten.

Werkzeugprüfling

Bestell-Nr.	Spezifikation
31212898	Prüfdorn ø3x70 mm min. Umdrehung TU zylindrisch
31212910	Prüfdorn ø4x70 mm min. Umdrehung TU zylindrisch
31212911	Prüfdorn ø5x70 mm min. Umdrehung TU zylindrisch
30844163	Prüfdorn ø6x70 mm Drehmoment TU
30844164	Prüfdorn ø8x70 mm min. Drehmoment TU
30844166	Prüfdorn ø10x70 mm min. Drehmoment TU
30844167	Prüfdorn ø12x70 mm min. Drehmoment TU
30844168	Prüfdorn ø14x70 mm min. Drehmoment TU
30844170	Prüfdorn ø16x70 mm min. Drehmoment TU
30844171	Prüfdorn ø18x70 mm min. Drehmoment TU
30844173	Prüfdorn ø20x70 mm min. Drehmoment TU
30844174	Prüfdorn ø25x100 mm min. Drehmoment TU
30844175	Prüfdorn ø32x100 mm min. Drehmoment TU

Handhabungshinweise Spannen – KS-Vorsatzflansch

Montage und Ausrichtung von KS-Vorsatzflanschen und MAPAL Modulaufnahmen mit Radial- und Winkelausrichtung

 Planflächen von Vorsatzflansch und Adapter reinigen.
 Darauf achten, dass die Planfläche der Ausrichtschraube nicht über die Planfläche des Vorsatzflansches ragt.

2. Vorsatzflansch einfügen. Befestigungsschrauben anlegen.

 Kegel und Planfläche von Prüfdorn beziehungsweise Werkzeug sorgfältig reinigen. Prüfdorn beziehungsweise Werkzeug einsetzen.

4. Messuhr an der Rundlaufkontrollstelle in Position bringen. Bei MAPAL Werkzeugen kann auch am HSK-Bund ausgerichtet werden. Tiefsten Messpunkt aufnehmen und Messuhr auf "null" bringen. Radialausrichtung vornehmen.

5. Zur Winkelausrichtung die Messuhr an der oberen Kontrollstelle beziehungsweise ca. 100 mm von der Trennstelle entfernt positionieren. Winkelausrichtung mittels der Ausrichtschrauben vornehmen. Die Ausrichtschrauben nach der Betätigung nicht entspannen.

6. Nachdem die Winkelausrichtung auf < 3 μm eingestellt ist, Radialausrichtung an der Rundlaufkontrollstelle am Bund nochmals kontrollieren und gegebenenfalls korrigieren. Sollte die Radialausrichtung korrigiert werden müssen, anschließend auch die Winkelausrichtung nochmals kontrollieren.</p>

Anzugsmomente

Nenngröße	Moduldurchmesser [mm]	Befestigungsschraube	Anzugsmoment [Nm]
HSK32	60	ISO 4762 - M5x16 - 12.9	8,7
HSK40	70	ISO 4762 - M6x20 - 12.9	15
HSK50	80	ISO 4762 - M6x20 - 12.9	15
HSK63	100	ISO 4762 - M8x25 - 12.9	36
HSK80	117	ISO 4762 - M8x25 - 12.9	36
HSK100	140	ISO 4762 - M10x30 - 12.9	72

Handhabungshinweise Spannen – Flächenspannfutter MillChuck, HB

Spannen eines Werkzeugs

Information:

Nur unbeschädigte und gratfreie Werkzeuge spannen.

1. Die Aufnahmebohrung und den Werkzeugschaft reinigen (Position 1).

Information:

Für eine korrekte Werkzeugspannung muss die HB-Fläche des Werkzeugs zur Spannschraube gerichtet sein.

 Das Werkzeug mit dem Schaft voraus in die Aufnahmebohrung des Flächenspannfutters schieben. Die Aussparung am Werkzeug ist dabei zur Spannschraube gerichtet.

- Das Werkzeug von oben andrücken. Gleichzeitig die Spannschraube im Uhrzeigersinn bis zum Anschlag drehen.
 - → Die Spannschraube liegt an der HB-Fläche des Werkzeugs an.
- **4.** Die Spannschraube eine halbe Umdrehung zurückdrehen.

- Einen Drehmomentschlüssel auf das angegebene Anzugsdrehmoment (siehe Tabelle "Anzugsdrehmomente der Spannschraube") einstellen.
- **6.** Die Spannschraube mit Hilfe des Drehmomentschlüssels auf Anschlag anziehen.

Anmerkung:

- Nur für geschultes Personal.
- Schutzhandschuhe tragen.
- Handhabung des Werkzeugs mit Schutzkappe empfohlen.

rgebnis:

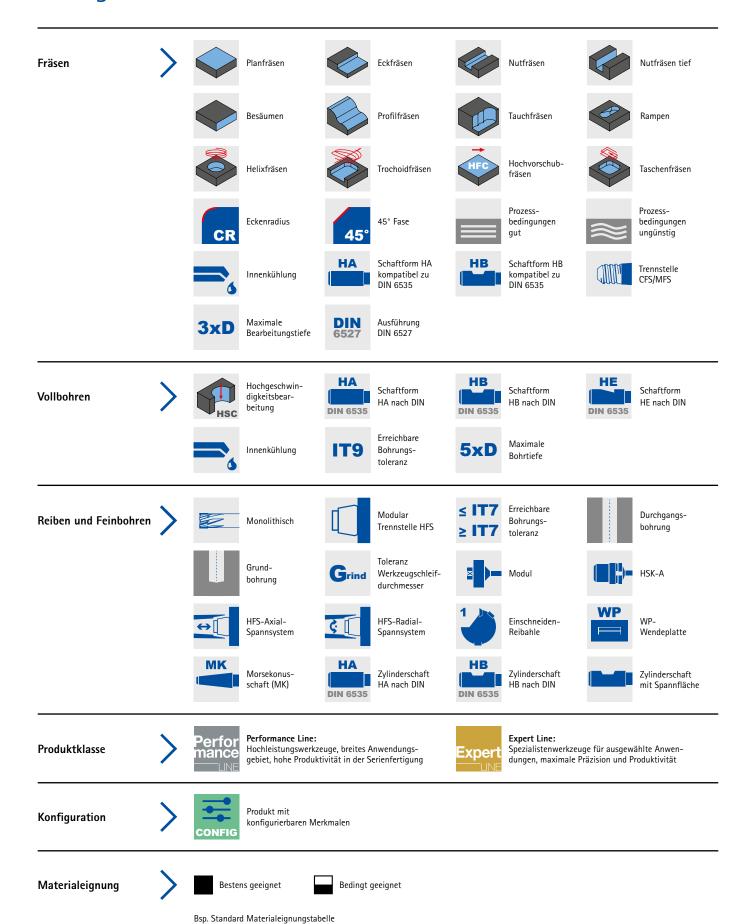
Das Werkzeug ist vollständig im Flächenspannfutter gespannt und kann eingesetzt werden.

Entspannen eines Werkzeugs

Information:

Die Spannschraube ist nicht gegen Herausfallen gesichert.

1. Die Spannschraube durch Drehen gegen den Uhrzeigersinn lösen.


2. Das Werkzeug aus der Aufnahmebohrung des Flächenspannfutters entnehmen.

Ergebnis: Das Werkzeug ist entnommen.

Anzugsdrehmomente der Spannschraube

Durchmesser Werkzeugschaft [mm]	Anzugsdrehmoment [Nm]	Torxgröße
6	10	T15
8	10	T25
10	7	T25
12	13	T30
14	13	T30
16	23	T40
18	23	T40
20	25	T40
25	47	T50
32	50	T50

Piktogramme

1 2 3 4 5 6 <mark>M</mark> 1 2 3

1 2 3

1 2 3 4 <mark>S</mark> 1 2 3 4 5 H 1 2 3

MAPAL Zerspanungsgruppen

Zerspanungs- gruppe		_	Werkstoff	Festigkeit/Härte [N/mm²] [HRC]	Häufig bearbeitete Werkstoffe
	Р	P1.1	Bau-, Automaten-, Einsatz- und Vergütungsstähle, unlegiert	< 700 N/mm ²	1.0122 (S235/St 37), 1.0401 (C15), 1.0503 (C45), 1.0570 (S355/St 52), 1.1213 (Cf53)
		P1.2	Bau-, Automaten-, Einsatz- und Vergütungsstähle, unlegiert	< 1.200 N/mm ²	1.1249 (Cf70)
	P	P2.1	Nitrier-, Einsatz- und Vergütungsstähle, legiert	< 900 N/mm ²	1.7131 (16MnCr5)
	Ρ.	P2.2	Nitrier-, Einsatz- und Vergütungsstähle, legiert	< 1.400 N/mm ²	1.7227 (42CrMoS4)
P		P3.1	Werkzeug-, Wälzlager-, Feder- und Schnellarbeitsstähle*	< 800 N/mm ²	1.2343 (X37CrMoV5-1), 1.2762 (75CrMoNiW6-7)
Р	P	P3.2	Werkzeug-, Wälzlager-, Feder- und Schnellarbeitsstähle*	< 1.000 N/mm ²	1.2367 (X38CrMoV5-3), 1.2713 (55NiCrMoV6)
		P3.3	Werkzeug-, Wälzlager-, Feder- und Schnellarbeitsstähle*	< 1.500 N/mm ²	1.2379 (X153CrMoV12) 1.2738 (40CrMnNiMo8-6-4)
	P	4 P4.1	Rostfreie Stähle, ferritisch und martensitisch		1.4510 (X3CrTi17), 1.4589 (X5CrNiMoTi15-2)
	P	5 P5.1	Stahlguss		1.7231 (G42CrMo4)
	Р	6 P6.1	Rostfreier Stahlguss, ferritisch und martensitisch		
		M1.1	Rostfreie Stähle, austenitisch	< 700 N/mm ²	1.4301 (V2A), 1.4571 (V4A)
	М	M1.2	Rostfreie Stähle, ferritisch/austenitisch (Duplex)	< 1.000 N/mm ²	1.4362 (Alloy 2304), 1.4501, 1.4662 (LDX 2404)
M	М	2 M2.1	Rostfreier Stahlguss, austenitisch	< 700 N/mm ²	
	М	_	Rostfreier Stahlguss, ferritisch/austenitisch (Duplex)	< 1.000 N/mm ²	
	K	1 K1.1	Gusseisen mit Lamellengraphit (Grauguss), GJL	< 300 N/mm ²	GJL-250 (GG-25), GJL-260 (GG-26 Cr)
		K2.1	Gusseisen mit Kugelgraphit, GJS	< 500 N/mm ²	GJS-400 (GGG-40), GJS-450 (GGG-45)
	\parallel_{K}	K2.2	Gusseisen mit Kugelgraphit, GJS	≤ 800 N/mm ²	GJS-600 (GGG-60), GJS-800-2 (GGG-80), GJS-800-8 (ADI 800)
K		K2.3	Gusseisen mit Kugelgraphit, GJS	> 800 N/mm ²	GJS-900-2 (GGG-90), GJS-1000-5 (ADI 1000), GJS-1200-2 (ADI 1200), GJS-1400-1 (ADI 1400)
		K3.1	Gusseisen mit Vermiculargraphit, GJV; Temperguss, GJM	< 500 N/mm ²	GJV-300, GJV-400, GJMW-400-5 (GTW-40)
	K	K3.2	Gusseisen mit Vermiculargraphit, GJV; Temperguss, GJM	> 500 N/mm ²	GJV-500, GJV-700
		N1.1	Aluminium, unlegiert und legiert < 3 % Si	> 500 14/11111	Alloy 2024, Alloy 7075, Al99
		N1.2	Aluminium, legiert ≤ 7 % Si		AlSi7
	N	1 N1.3	Aluminium, legiert > 7-12 % Si		AlSi9, AlSi9Cu
		N1.4	Aluminium, legiert > 12 % Si		AlSi12, AlSi17
	Н	N2.1	Kupfer, unlegiert und niedriglegiert	< 300 N/mm ²	SE-Cu
	N			> 300 N/mm ²	CuSn6
N	IN	N2.3	Messing, Bronze, Rotguss	< 1.200 N/mm ²	CuZn33, CuAl9Mn3
	\vdash	_		< 1.200 N/IIIII	CUZIISS, CUAISIVIIS
	N	$\frac{N3.1}{N3.2}$	Graphit < 8 um		
	Н	N3.2 N4.1			DA DE DO DE DATO DO DITE DOM DAMAA
	N		Kunststoff, Thermoplaste Kunststoff, Duroplaste		PA, PE, PC, PS, PVC, PP, PTFE, POM, PMMA
	IN	4 N4.2 N4.3	Kunststoff, Schaumstoffe		PU, PF, EP, UP, VE, CR EPS, PUR, PVC-E, PS-E, PP-E
		CO.			
		C1.1 C1.2	Kunststoffmatrix, Aramidfaserverstärkt (AFK) Kunststoffmatrix (duroplastisch), CFK/GFK		Nomex, Kevlar, Twaron, KOREX IMS, HTA
		e —			
	4	C1.3	Kunststoffmatrix (thermoplastisch), CFK/GFK		GMT-PP, PEEK
	볹	C2.1	Kohlenstoffmatrix, Kohlenstofffaserverstärkt (CFC)		CF222, CF225, CF226, CF227, CF260
	15	C3.1	Metallmatrix (MMC)		CeramTec AO-403 (AISi9MgMn-AI2O3), AI/Cu/Mg-SiO2/AI2O3/AIN/TiC/SiC/BN/TiB2
	l c	C4.1	Sandwichkonstruktion, Wabenkern (Honeycomb)		N 10005 DIVIO VID. 2004 VID. 2004 DIVIO VID. 2004 VI
//		C4.2	Sandwichkonstruktion, Schaumkern		PLASCORE PAMG-XR1 5052, PCGA-XR1 3003, PAMG-XR1 5056, Micro-Cell (core made of Alloy 5052/5056)
		C5.1	Schichtverbund (Stack), Nichtmetall-Nichteisenmetall-Verbund		CFK-Aluminium, IMS/HTA + Alloy 2024/6061/7075
		C5.2	Schichtverbund (Stack), Nichtmetall-Metall-Verbund		CFK-Titan, IMS/HTA + TiAl6V4/AMS4905
	c	C5.3	Schichtverbund (Stack), Nichtmetall-Nichtmetall-Verbund		CFK-CFK
		C5.4	Schichtverbund (Stack), Nichteisenmetall-Nichteisenmetall-Verbund		Aluminium-Aluminium
		C5.5	Schichtverbund (Stack), Nichteisenmetall-Metall-Verbund		Aluminium-Titan
		C5.6	Schichtverbund (Stack), Metall-Metall-Verbund		Titan-Inox
	5		Titan, Titanlegierungen	< 400 N/mm ²	
	S		Titan, Titanlegierungen	< 1.200 N/mm ²	TiAl6V4
	_	S2.2	Titan, Titanlegierungen	> 1.200 N/mm ²	
S	S	S3.1	Nickel, unlegiert und legiert	< 900 N/mm ²	1.3912 (Invar, Ni36)
		S3.2	Nickel, unlegiert und legiert	> 900 N/mm ²	
	S	4 S4.1	Hochwarmfeste Superlegierung, Ni-, Co-, und Fe-basiert		Hardox, Hastelloy, Incoloy, Inconel, NIMONIC, Stellite, Waspaloy
	S	5 S5.1	Wolfram- und Molybdänlegierungen		
н	Н	H1.1	Gehärteter Stahl/Stahlguss	< 44 HRC	1.2738 HH, 1.2085, Toolox 33, Toolox 44
	"	H1.2	Gehärteter Stahl/Stahlguss	< 55 HRC	1.2343, 1.2311, 1.2312, 1.2714, 1.2083, 1.2738
		H2.1	Gehärteter Stahl/Stahlguss	< 60 HRC	1.1730, 1.2379, 1.2358, 1.2767, 1.4112, ASP 2012
	Н	2 H2.2	Gehärteter Stahl/Stahlguss	< 65 HRC	1.2379, 1.2363, 1.2436, 1.2842, ASP 2005, Vanadis 23
		H2.3	Gehärteter Stahl/Stahlguss	< 68 HRC	ASP 2017, ASP 2023, Vanadis 30, Vanadis 60
	Н	3 H3.1	Verschleißbeständiger Guss/Hartguss, GJN		

^{*} Wenn die Legierungsbestandteile Cr, Mo, Ni, V, W in Summe > 8 %, dann die nächst höhere MAPAL Zerspanungsgruppe wählen.

Entdecken Sie jetzt Werkzeug- und Service-Lösungen, die Sie vorwärts bringen:

BOHRUNGSBEARBEITUNG

REIBEN | FEINBOHREN VOLLBOHREN | AUFBOHREN | SENKEN

FRÄSEN

SPANNEN

DREHEN

AUSSTEUERN

EINSTELLEN | MESSEN | AUSGEBEN

SERVICES

